Видеокамеры с широким динамическим диапазоном. Динамический диапазон устройства вывода изображения

Динамический диапазон -- это отношение максимального допустимого значения измеряемой величины (яркости по каждому из каналов) к минимальному значению (уровню шумов). В фотографии динамический диапазон принято измерять в единицах экспозиции (шаг, стоп, EV), т.е. логарифмом по основанию 2, реже - десятичным логарифмом (обозначается буквой D). 1EV = 0,3D. Изредка используют и линейное обозначение, например 1:1000, что равно 3D или почти 10EV.

Характеристика «динамический диапазон» также используется для форматов файлов , используемых для записи фотографий . В этом случае он назначается авторами конкретного формата файла, исходя из тех целей, для которых этот формат будет использоваться. Например, ДД

Термином «динамический диапазон» иногда неверно называют любое отношение яркостей в фотографии:

  • отношение яркостей самых светлых и тёмных объектов съемки
  • максимальное отношение яркостей белого и чёрного цветов на мониторе/фотобумаге (верный английский термин contrast ratio)
  • диапазон оптических плотностей плёнки
  • другие, ещё более экзотические варианты

Динамический диапазон современных цифровых фотоаппаратов на начало 2008 года составляет от 7-8 EV у компактных камер до 10-12 EV у цифровых зеркальных камер (см. тесты современных камер на http://dpreview.com). При этом необходимо помнить, что матрица передает объекты съёмки с разным качеством, детали в тенях искажаются шумами , в светах - передаются очень хорошо. Максимальный ДД зеркалок доступен только при съемке в RAW , при конвертации в JPEG камера обрезает детали, сокращая диапазон до 7,5-8,5EV (в зависимости от настроек контраста камеры).

Динамический диапазон файлов и матриц фотоаппаратов часто путают с количеством бит , используемых для записи информации, однако прямой связи между этими величинами нет. Поэтому, например, ДД Radiance HDR (32 бита на пиксель) больше, чем 16-битного RGB (фотоширота), показывающая тот диапазон яркостей, который пленка может передать без искажений, с равным контрастом (диапазон яркостей линейной части характеристической кривой плёнки). Полный ДД плёнки обычно несколько шире фотошироты и виден на графике характеристической кривой плёнки.

Фотоширота слайда составляет 5-6EV, профессионального негатива - около 9EV, любительского негатива - 10EV, киноплёнки - до 14EV.

Расширение динамического диапазона

Динамического диапазона современных камер и пленок недостаточно для того, чтобы передать любой сюжет окружающего мира. Особенно это заметно при съемке на слайд или компактную цифровую камеру, которые зачастую не могут передать даже яркий дневной пейзаж в средней полосе России , если там есть объекты в тени (а диапазон яркостей ночного сюжета с искусственным освещением и глубокими тенями может доходить до 20EV). Эта проблема решается двумя путями:

  • увеличение динамического диапазона камер (видеокамеры для систем наблюдения имеют заметно больший динамический диапазон, чем фотокамеры, однако это достигается путем ухудшения других характеристик камеры; каждый год выходят новые модели профессиональных камер с лучшими характеристиками, при этом их динамический диапазон медленно растет)
  • комбинирование изображений, снятых с разной экспозицией (технология HDR в фотографии), в результате которого возникает единое изображение, содержащее все детали из всех исходных изображений, как в крайних тенях, так и в максимальных светах.

Файл:HDRIexample.jpg

HDRi фотография и три снимка, из которых она собрана

Оба пути требуют решения двух проблем:

  • Выбор формата файла, в который можно записать изображение с расширенным диапазоном яркостей (обычные 8-битные sRGB файлы для этого не подходят). На сегодня самыми популярным форматами являются Radiance HDR, Open EXR, а так же Microsoft HD Photo , Adobe Photoshop PSD , RAW -файлы зеркальных цифровых камер с большим динамическим диапазоном.
  • Отображение фотографии с большим диапазоном яркостей на мониторах и фотобумаге , имеющих существенно меньший максимальный диапазон яркостей (contrast ratio). Данная проблема решается с помощью одного из двух методов:
    • тональная компрессия, при которой большой диапазон яркостей уменьшается в небольшой диапазон бумаги, монитора или 8-битного sRGB-файла путем уменьшения контраста всего изображения, единым образом для всех пикселей изображения;
    • тональное отображение (tone mapping, тонмаппинг), при котором производится нелинейное изменение яркостей пикселей, на разную величину для разных областей изображения, при этом сохраняется (или даже увеличивается) оригинальный контраст, однако тени могут выглядеть неестественно светлыми, и на фотографии могут появиться ореолы на границах областей с разным изменением яркости.

Тонмаппинг также может использоваться и для обработки изображений с небольшим диапазоном яркостей для повышения локального контраста.

Из-за способности тонмаппинга выдавать «фантастические» картинки в стиле компьютерных игр, и массового представления таких фотографий с вывеской «HDR» (даже полученных из одного изображения с небольшим диапазоном яркостей) у большинства профессиональных фотографов и опытных любителей выработалось стойкое отвращение к технологии расширения динамического диапазона из-за неверного мнения о том, что она нужна для получения таких картинок (приведенный выше пример показывает использование методов HDR для получения нормального реалистического изображения).

См. также

Ссылки

  • Определения основных понятий:
    • БСЭ, статья «фотографическая широта»
    • Горохов П. К. «Толковый словарь по радиоэлектронике. Основные термины» - М.: Рус. яз., 1993
  • Фотоширота пленок и ДД фотоаппаратов
    • http://www.kodak.com/global/en/professional/support/techPubs/e4035/e4035.jhtml?id=0.2.26.14.7.16.12.4&lc=en
  • Форматы файлов:

Wikimedia Foundation . 2010 .

Смотреть что такое "Динамический диапазон в фотографии" в других словарях:

    Динамический диапазон: Динамический диапазон (техника) характеристика устройства или системы, предназначенной для преобразования, передачи или хранения некой величины (мощности, силы, напряжения, звукового давления, представляющая логарифм… … Википедия

    Динамический диапазон характеристика устройства или системы, предназначенной для преобразования, передачи или хранения некой величины (мощности, силы, напряжения, звукового давления и т. д.), представляющая логарифм отношения максимального и… … Википедия

    У этого термина существуют и другие значения, см. Динамический диапазон. Динамический диапазон характеристика устройства или системы, предназначенной для преобразования, передачи или хранения некой величины (мощности, силы, напряжения, звукового… … Википедия

    Фотографическая широта характеристика светочувствительного материала (фотоплёнки, передающей телевизионной трубки, матрицы) в фотографии, телевидении и кино. Определяет способность светочувствительного материала правильно передавать яркость… … Википедия

    Контраст в наиболее общем смысле, любая значимая или заметная разница (например, «Россия страна контрастов…», «контраст впечатлений», «контраст вкуса пельменей и бульона вокруг них»), не обязательно измеряемая количественно. Контрастность степень … Википедия

    Для улучшения этой статьи желательно?: Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное … Википедия

    У этого термина существуют и другие значения, см. HDR. High Dynamic Range Imaging, HDRI или просто HDR общее название технологий работы с изображениями и видео, диапазон яркости которых превышает возможности стандартных технологий. Чаще… … Википедия

    Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей … Википедия

    В Википедии есть п … Википедия

    - (лат. redactus приведённый в порядок) изменение оригинала изображения классическими или цифровыми методами. Также может обозначаться термином ретуширование, ретушь (фр. retoucher подрисовывать, подправлять). Целью редактирования… … Википедия

В самом упрощённом виде определение звучит так: динамический диапазон определяет способность светочувствительного материала (фотопленки, фотобумаги, светочувствительной аппарата) правильно передавать яркости снимаемого объекта. Не очень понятно? Суть явления не так очевидна, как кажется на первый взгляд. Дело в том, что глаз и фотоаппарат видят мир по-разному. Глаз развивался несколько сот миллионов лет, а оптическая система аппарата — полторы сотни лет. Для глаза огромный перепад яркостей в наблюдаемом мире — тривиальная задача, а для аппарата — иногда непосильная. И, если глаз воспринимает весь диапазон яркостей, то фотоаппарат «видит» только узкую часть диапазона , которая как бы передвигается по шкале в одну и другую сторону, в то время как мы изменяем съёмки.

Давайте на несколько минут вернёмся в прошлый, XX, век, во времена плёночной фотографии. Тому, кто не застал тех славных времён, придётся напрячь свою фантазию.

Техпроцесс печати, наверное, представляют все. Свет лампы увеличителя, пройдя через негатив, освещает фотобумагу. Там, где негатив прозрачный, весь свет проходит, не задерживаясь, а там, где плотный – поток сильно ослабевает. Потом бумага помещается в проявитель. Те места, которым досталось много света – чернеют, а участки, оставшиеся на голодном световом пайке – наоборот, остаются белыми. Ну и, конечно, никуда не делись промежуточные тона. Представим, что на негативе есть как абсолютно чёрные участки, через которые свет вообще не пробивается, так и абсолютно прозрачные, пропускающие весь свет. Есть ещё такое понятие, как время максимальной выдержки. Оно для каждого увеличителя своё и зависит от типа лампы, её мощности и от конструкции рассеивателя. Допустим, что это время составляет 10 секунд. Нам не столько важна абсолютная его величина, сколько само понятие – за эти 10 секунд фотобумага, помещённая под лампу фотоувеличителя, безо всякого негатива (или с абсолютно прозрачным негативом), сможет вобрать в себя весь поступивший свет. Больше она просто не примет – происходит насыщение. Свети хоть 20 секунд, хоть 3600 – разницы уже не будет. Она уже и так останется максимально чёрной.

Внимание, вопрос. Как Вы считаете, сколько полутонов сможет расположиться на полоске фотобумаги между абсолютно белым и абсолютно чёрным участком, так чтобы человек различал разницу между ними? Давайте разделим полоску на 10 частей, и будем увеличивать экспозицию (то есть количество света) для каждого последующего участка на одну и ту же величину, например, на секунду. Таким образом, мы получим 10 участков, со всё увеличивающейся экспозицией (всё более чёрных). Вот это количество полутонов, которые может воспроизвести светоприёмник, и называется его динамическим диапазоном.

Вы удивитесь, когда не сможете различить все 10 переходов на полоске фотобумаги, особенно в светлой её части (глаз человека сможет различить гораздо больше, не справится именно бумага). Оказывается, что фотобумага, на которой напечатаны все чёрно-белые шедевры за последние лет 150, может уверенно передать всего-навсего 5-6-7 ступеней полутонов, в зависимости от контраста. Чуть лучше обстоит дело с фотоплёнкой – она вмещает в себя 12-14, а то и ещё больше градаций полутонов! У слайдовой плёнки диапазон полутонов составляет 7-10 ступеней.

Нас, как цифровых фотографов, интересует, конечно, матрица цифрового аппарата. Довольно долгое время цифроматрица находилась в явных аутсайдерах. Её динамический диапазон был примерно сопоставим с таковой у слайдовой плёнки. Сегодня же, с почти полным переходом на CCD-матрицу, динамический диапазон матрицы цифровых аппаратов значительно расширен – примерно до 12-14 ступеней. Специальные же матрицы от Fuji имеют ещё бОльший динамический диапазон (В этих матрицах для увеличения динамического диапазона используется наличие на одной и той же матрице элементов различной площади и различной эффективной чувствительности. Передача низких уровней яркости обеспечивается элементами большой чувствительности, а высоких яркостей - низкой).

Для чего нам нужно понятие динамического диапазона? Дело в том, что оно очень тесно связано с измерением и выбором .

Среднестатистический сюжет как раз состоит из этих самых 7-8 ступеней экспозиции. И, если мы верно выставим экспозицию, необходимую для передачи всех полутонов, присутствующих в исходном объекте, мы прекрасно справимся с поставленной задачей – получим отлично проработанное как в светах, так и в тенях изображение. Наш светоприёмник (матрица или плёнка) как раз уместит в своём диапазоне весь диапазон яркостей объекта.

Усложняем задачу – выходим за рамки средней съёмки – добавляем солнышко. Диапазон яркостей сразу увеличивается, появляются световые блики, отражения, глубокие тени. Глаз с этим справляется на «ура», ему только не очень нравится смотреть на слишком яркие источники света, а вот для фотоаппарата наступают тяжёлые минуты. Как угодить хозяину? Что выбрать? Увеличишь экспозицию – получишь выбитые зубы света и невестино платье станет просто белым куском, уменьшишь, постараешься поймать платье невесты, так у жениха костюм – сплошное чёрное пятно. Диапазон яркостей объекта намного превышает возможности светоприёмника, и в этом случае приходится идти на компромисс, подключать творчество, опыт и знание теории.

«А может сделать силуэт, да не париться? Так даже лучше» — это творчество .

«Экспозиция – по лицу. А платье и пиджак подтянем кривыми в Любимой Программе» — это знание теории .

«Отведу-ка я пару воон под то деревце, и таким образом выровняю перепад яркостей, а, следовательно, и динамический диапазон» — это опыт .

Изменить динамический диапазон своего аппарата мы не в силах, мы можем только помочь ему принять верное решение в сложных ситуациях. Мы помогаем ему в выборе — какая жертва для нас, как для автора снимка менее трагична.

Надеюсь, теперь стало более понятно, как связано понятие динамического диапазона с экспозицией. Чтобы получить возможно более качественный снимок, необходимо весь диапазон полутонов объекта уместить в динамический диапазон аппарата, либо – решая творческие задачи – сместить диапазон яркостей объекта в одну или другую сторону.

Одним из способов увеличения динамического диапазона является многократная съёмка объекта с разными экспозициями с последующим цифровым «склеиванием», объединением кадров в одно изображение. Такой способ носит название HDR — High Dinamic Range.

Последний абзац посвящу извинениям. Дело в том, что на самом деле понятие «динамический диапазон» довольно сильно зависит от способа измерения — по контрастности, по плотности или f-ступенями, от цветового пространства, от освещенности (для отпечатков или мониторов), от области применения — для сканера, для матрицы, для монитора, для бумаги и прочее. Поэтому прямое сравнение динамического диапазона, как это проделали мы, если честно, довольно значительно грешит против настоящей, скрупулёзной физики. В своё оправдание скажу, что я попытался дать возможно более понятное объяснение термина. За более детальным (строгим) определением отсылаю читателя в просторы сети (вот хороший пример для начала — «Динамический диапазон в цифровой фотографии «).

И ещё. Ну это уже точно самый последний абзац. С понятиями «Динамический диапазон» и «Экспозиция» очень тесно связна интереснейшая «Зонная теория Анселя Адамса». Точнее, придумал теорию не Адамс, но он здорово популяризовал её, развил и теоретически обосновал, так что теперь она носит его имя. При случае обязательно познакомьтесь с ней.

Удачных снимков!

Нет связанных статей.

Динамический диапазон - жизненно важный «òрган» вашей фотографии: или даст путёвку в жизнь или отправит в мусорную корзину. В этом уроке мы объясним, как передать на снимке все тона, присутствующие в сцене, и обсудим способы расширения динамического диапазона.

Если вы когда-нибудь фотографировали при прямом солнечном свете или сюжет, где присутствовали яркие блики и глубокие тени, то наверняка сталкивались с проблемой: фотоаппарат запечатлевает детали либо в бликах, либо в тенях, либо ни там, ни там.

Это одна из самых распространённых трудностей, с которой вы будете сталкиваться. Она не связана с экспозицией. Причина явления заключается в разнице между яркостью бликов и яркостью теней в снимаемой сцене - в её, так называемом, динамическом или тоновом диапазоне. Разница может быть настолько большой, что вы не сможете запечатлеть и блики, и тени, какой бы ни была экспозиция.

Светочувствительный сенсор цифрового фотоаппарата может различать тона из широкого диапазона, но ширина последнего не бесконечна. Как только вы соберётесь сфотографировать сюжет, тоновый диапазон которого, другими словами разница яркостей, шире динамического диапазона сенсора, возникнет проблема, описанная выше.

Всё, что вам нужно знать о динамическом диапазоне

Что такое «динамический диапазон»?

Это способ, которым описываются тона на изображении: от ярчайших бликов до глубочайших теней. Динамический диапазон измеряется в «значениях экспозиции» (EV) или, что то же самое, в «стопах».

Некоторые снимаемые сцены обладают широким тоновым диапазоном. Это означает, что между яркостями самого тёмного участка сцены и самого светлого её участка значительная разница. Она измеряется в EV. Типичный представитель таких сцен - съёмка силуэта на фоне заходящего солнца. Существуют сцены с более узким тоновым диапазоном.

Как вы могли отметить, следует рассматривать два динамических диапазона: снимаемой сцены и светочувствительного сенсора фотоаппарата.

  • Подробнее о динамическом диапазоне светочувствительного сенсора, отличиях RAW и JPEG форматов, вы можете узнать из статьи .

Одинаковы ли динамические диапазоны камеры и сцены?

Сенсор, встроенный в ваш фотоаппарат, за один щелчок затвора может запечатлеть тона только из определённого динамического диапазона. Пока разница между яркостями бликов и теней в снимаемой сцене укладывается в него, на фотографии вы увидите как детали в светах, так и детали в тенях.

Например, если динамический диапазон фотоаппарата равняется 8 EV, а разница яркостей интенсивных бликов и глубоких теней - 6 EV, то вы сохраните на изображении все детали сцены. Соответственно, в противоположном случае фотография будет содержать либо чёрные, «заваленные», пятна-тени, которые в реальности вовсе не чёрные, или белые, «пересвеченные», блики, которые в снимаемой сцене имеют вполне определённый цвет. А в некоторых случаях, картинка будет страдать и от «завала», и от «пересвета».

У всех ли камер динамический диапазон одинаковый?

Нет, светочувствительные сенсоры различаются по своим возможностям. Чем выше динамический диапазон фотоаппарата, те больше деталей он способен запечатлеть. Например, динамический диапазон камеры Nikon D610 измеряется в пределах 13 и 14,4 EV при чувствительности ISO равной 100.

Как узнать, что камера справится с тоновым диапазоном снимаемой сцены?

Во времена плёночной фотографии ответу на этот вопрос предшествовал кропотливый труд. Вам нужно было замерить яркость самых светлых участков сцены и яркость самых тёмных её участков. Затем вычислить разницу яркостей. Наконец, проверить, что динамический диапазон плёнки, на которую вы планируете снимать, может охватить найденный тоновый диапазон снимаемой сцены, и узнать, какая экспозиция удовлетворяет этому условию.

В цифровой фотографии вам достаточно изучить гистограмму, высвечивающуюся на экране фотоаппарата. Всё что вам нужно проверить: распределение тонов снимаемой сцены (ширина гистограммы) укладывается в динамический диапазон камеры (ширина таблицы). Если гистограмма «обрезается» краями таблицы, то налицо потеря деталей. Так, «обрезание» правым краем означает потерю деталей в бликах, «обрезание» левым краем - в тенях. После того как гистограмма помогла вам прояснить ситуацию, вам следует правильно подобрать экспозицию, чтобы поместить тоновый диапазон снимаемой сцены в динамический диапазон камеры.

Очень часто, проблема с динамическим диапазоном решается именно таким способом: вы меняете экспозицию и делаете повторный снимок. Однако, бывают ситуации, когда снимаемая сцена обладает широким распределением яркостей, то есть широкой гистограммой. Широкой настолько, что заключить её между краями таблицы не удаётся ни с какой экспозицией.

В пасмурную погоду тоновый диапазон снимаемой сцены достаточно узкий - гистограмма получается узкой. Здесь если возникает проблема, то она решается подбором экспозиции. А в солнечную погоду тоновый диапазон - а вместе с ним и гистограмма - расширяется настолько, что «уместить» её в границы таблицы не получается ни при каких ухищрениях.

Что делать?

Гистограмма показывает распределение тонов во всей сцене, а не лишь тех участков, которые вам интересны! Поэтому вполне нормальным считается «потерять» тени в некоторых малозначимых участках сюжета, особенно, если вы намерены создать чёрно-белое изображение.

Получается, руководствуйтесь гистограммой, а принимайте решение своими глазами. Замерить яркость в определённом участке снимаемой сцены можно с помощью точечного экспозамера - режим измерения экспозиции, который вы можете найти в любой зеркальной цифровой камере. Измерив экспозицию в самом светлом и самом тёмном участках сюжета, вы можете оценить, есть ли хотя бы одна экспозиция, общая для обоих участков.

В качестве альтернативы вы можете фотографировать в формате RAW. Камера запечатлеет до 1 EV тонов больше, чем в съёмке в формате JPEG. Дополнительные детали вы сможете извлечь из RAW-файла на этапе обработки, в RAW-интерпретаторе. Кстати, вы не увидите во время съёмки преимуществ RAW-формата: гистограмма отображает возможности изображения, которое появляется после спуска затвора на экране фотоаппарата. А это изображение - JPEG-снимок, даже если вы фотографируете в RAW.

В съёмке в формате RAW вам как и прежде следует аккуратно выбирать экспозицию. Однако, вы располагаете здесь небольшой свободой, что может помочь вам запечатлеть очень глубокие тени или очень яркие блики.

Иногда даже съёмка в формате RAW не выручает: вы всё равно упускаете детали в светлых и/или тёмных участках сцены. Вот тогда вы можете открыть для себя мир Фотографий с Широким Тоновым Диапазоном (HDR-фотография).

Поможет ли здесь компенсация экспозиции?

Нет. Эта функция влияет на светлоту всего снимка. Вы можете сместить гистограмму влево или вправо, чтобы избежать «обрезания» справа или слева, соответственно. Но динамические диапазоны сенсора и снимаемой сцены не изменятся.

Если тоновый диапазон сцены настолько широк, что сенсор камеры не может его зафиксировать полностью, то определите для себя наиболее важные детали: они в светах или в тенях? Затем выберите соответствующую экспозицию. Обычно, целесообразно экспонировать по бликам, другими словами, уменьшать экспозицию. Это позволяет сохранить детали в светах.

Ещё, некоторые настройки камеры могут расширить имеющийся динамический диапазон сенсора.

Какие это настройки?

Динамический диапазон светочувствительного сенсора тем шире, чем меньше чувствительность ISO. Также, снимать следует в RAW-формате. RAW-изображение сохраняет гораздо больше информации, чем JPEG-изображение. Другими словами, тоновая плотность RAW-снимка выше, а значит вам проще восстановить детали в случае недоэкспозиции или переэкспозиции.

В большинстве фотоаппаратов вы найдёте функцию, которая автоматически восстанавливает детали в тенях или бликах. В Nikon-камерах она называется «Active D-Lighting», в Canon-камерах - «Auto Lighting Optimizer». Функция высветляет тени, тем самым имитирует расширение динамического диапазона светочувствительного сенсора. Обратите внимание, она работает в съёмке в формате JPEG.

Наконец, вы можете создать HDR-фотографию. Само название говорит о сути: изображение с широким тоновым диапазоном. Если не удаётся охватить тоновый диапазон снимаемой сцены одной экспозицией, то почему бы не сделать несколько снимков с разными экспозициями и не соединить их. Объединить исходные снимки вы можете с помощью специальной программы, например, Photomatix. Таким способом вы представите на итоговом изображении гораздо больше тонов снимаемой сцены, чем с помощью традиционного подхода: фотографировании с одной экспозицией. Кстати, в некоторые фотоаппараты встраивается функция HDR-съёмки, что может существенно упростить вам жизнь.

С HDR-изображениями легко переусердствовать: итоговая картинка может получиться совершенно нереалистичной. Если HDR-фотография не ваша стихия, то обратите внимание на другие способы сжатия динамического диапазона. Особенно, если вы планируете фотографировать высококонтрастную сцену.

О каких способах идёт речь?

Вы можете воспользоваться вспышками и отражателями, чтобы подсветить глубокие тени, детали которых в противном случае на снимке не отразятся. Фотографы, снимающие пейзажи, делают обратное: используют , чтобы затемнить блики и, тем самым, сохранить в них детали.

С одного конца прозрачные, а с другого конца затемнённые. Если расположить затемнённую часть фильтра напротив яркого неба, а прозрачную часть - напротив ландшафта, то изображение неба получится затемнённым и, соответственно, его яркость приблизится к яркости ландшафта.

В настоящее время, пейзажисты используют другой приём - съёмка в две экспозиции. Экспозиция для одного снимка определяется по ландшафту, а экспозиция второго снимка - по небу. Затем два изображения «складываются» в Photoshop или в другом графическом редакторе.

Проблемные сцены

Сюжеты с контровым освещением

Если источник света располагается позади снимаемого объекта, то сторона объекта, обращённая к камере, находится в тени. Разница в яркостях фона и объекта получается очень большой.

Пейзажи с ярким небом

Переэкспонированное небо портит фотографии. В облачную погоду яркость неба может на несколько EV превышать яркость остальных частей снимаемой сцены. Здесь помогает градиентный фильтр: «понижая» яркость неба, он сужает тоновый диапазон сцены.

Интерьеры/экстерьеры

Разница освещённостей внутри и снаружи помещения в дневное время, а также разница освещённостей различных участков здания, залитого солнечным светом, несомненно превышает динамический диапазон сенсора - одной экспозиции будет недостаточно. Чтобы проявить детали за окнами, в которые врывается солнечный свет, вам придётся создавать несколько снимков с различными экспозициями.

Сюжеты с источниками света в кадре

Если в кадр попадает источник света, то область свечения будет слишком яркой в сравнении с остальными частями снимаемой сцены. Просто примите тот факт, что изображение источника получится переэкспонированным.

Решения

Пейзажи

Обычно гистограммы для подобных сюжетов содержат два высоких пика: один обозначает яркое небо, другой - тёмную землю. Скорее всего, вы не сможете охватить одновременно и блики, и тени одной экспозицией без дополнительных приспособлений.

Градиентный фильтр нейтральной плотности поможет в этой ситуации.

Портреты в контровом освещении

Когда вы фотографируете лицо человека на фоне светлого неба и выбираете экспозицию по модели, фон изображается слишком светлым. Если вы настраиваете экспозицию по небу, то получаете силуэт модели.

Воспользуйтесь вспышкой или отражателем. Установите экспозицию по светлому фону и подсветите лицо модели со стороны камеры.

Солнце и тень

В солнечный день вы можете столкнуться с высококонтрастной сценой: разница между участками, залитыми светом, и затенёнными областями может быть настолько большой, что сенсор едва ли «втиснет» её в JPEG-фотографию.

Снимайте в формате RAW. На этапе обработки вы сможете восстановить детали в «пересвеченных» или «заваленных» областях снимка.

Рассветы и закаты

На закате небо, чаще всего, значительно ярче ландшафта.

Предыдущий трюк может быть полезным, но его, иногда, недостаточно. Решение - съёмка в две экспозиции или HDR-фотография. Другими словами, создайте серию снимков с различной экспозицией, чтобы на этапе обработки «собрать» из них одно изображение, где все детали сохраняются.

Измеряем тоновый диапазон снимаемой сцены

Чтобы выбрать оптимальную экспозицию, вам нужно изучить распределение яркостей в сюжете.

Перейдите в ручной режим

В ручном режиме съёмки («M») вы можете самостоятельно оценивать экспозицию по показанию экспонометра.

Укажите значение диафрагмы

Когда вы выберите диафрагменное число, вам останется лишь подобрать соответствующую выдержку. Установите значение диафрагмы равным 8.

Включите точечный режим экспозамера

В точечном режиме (Spot exposure measuring mode) экспонометр фотоаппарата замеряет освещённость в маленьком участке изображения вокруг активной точки фокусировки. Кстати, включите дополнительно ручной выбор точек фокусировки (Single-point AF Mode).

Определите экспозицию в наиболее ярком участке сцены

Расположите активную точку фокусировки на самом ярком, на ваш взгляд, участке сюжета (только не на солнце). Затем подберите выдержку так, чтобы датчик экспонометра указывал на 0. У нас получилась 1/500 секунды.

Определите экспозицию в наиболее тёмном участке сцены

Теперь проделайте действия из предыдущего шага для самой тёмной области сюжета. У нас выдержка получилась равной 1/30 секунды.

Посчитайте разницу

Если разница между выдержками, определёнными Вами на предыдущих шагах, не превышает 4 EV, как в нашем случае, то установите среднюю выдержку. В нашем примере она равняется 1/125 секунды.

  • Если вы хотите узнать, почему между 1/30 и 1/500 секунды 4 EV, почему выдержка равная 1/125 секунды является средней между 1/30 и 1/500 секунды, то обратитесь к статье .

Настраиваем фотоаппарат на широкий динамический диапазон

RAW-изображение хранит 12 или 14 бит информации вместо 8 бит у JPEG-снимка. Это даёт RAW-картинке преимущество на этапе обработки: вы можете проявить детали в очень тёмных и очень светлых областях фотографии и, тем самым, отобразить на снимке более широкий тоновый диапазон.

Совет #2. Пользуйтесь функцией расширения динамического диапазона

Производители фотоаппаратов включают в свои камеры оригинальные функции, восстанавливающие на существующем изображении детали в «пересвеченных» и «заваленных» областях снимка. Например, у Canon эта функция называется «Auto Lighting Optimizer». Часто, используя подобные функции, вы можете выбирать силу эффекта, чтобы отрегулировать «натуральность» результата.

Когда вы просматриваете гистограмму, держите в голове мысль: «В RAW-файле содержится другая информация». Дело в том что гистограмма отражает ситуацию с JPEG-изображением, к которому во время съёмки уже были применены настройки фотоаппарата.

Снимаем HDR-изображения с помощью функции, встроенной в камеру

Шаг #1. Выберите ширину динамического диапазона

В режиме HDR-съёмки фотоаппарат создаёт быструю последовательность из двух-трёх кадров, затем накладывает их друг на друга, и результат наложения сохраняет в формате JPEG. Вы можете как самостоятельно определять разницу в экспозициях кадров, таки и доверять выбор камере. Чем больше число (разница), тем шире динамический диапазон итогового изображения

Шаг #2. Установите режим HDR-обработки

На HDR-изображении в глубоких тенях и ярких бликах проявляются детали: тени осветляются, блики затемняются. В итоге, итоговая картинка может выглядеть плоской. Вы можете повлиять на результат, выбрав походящий режим HDR-обработки. Тем самым, вы сможете насытить цвета, повысить контрастность и сделать линии более чёткими, другими словами, придать изображению живописный и графичный вид.

Шаг #3. Сохраните оригинальные снимки

Несмотря на то что «на выходе» получается HDR-изображение в формате JPEG, вы можете сохранить исходные снимки на карте памяти. А затем, используя специальное программное обеспечение, «объединить» фотографии в HDR-изображение так, как Вы хотите. В Canon 5D Mark III вы можете сохранить исходные снимки даже в формате RAW. Это позволит вам достичь наибольших качества и аккуратности «объединения».

«Небо пропало»… вам знакома такая мысль, когда вы смотрите на свой снимок и мысленно сравниваете его с тем, что видели на самом деле? Или наоборот, небо красивое, а все остальное скрыто в глубокой тени. Так что же делать? В чем причина? Причина в динамическом диапазоне! А что это такое, можно ли исправить ситуацию и как сделать — читайте в этой статье! Все не так сложно как кажется!

Динамический диапазон — это способность некоего устройства, в нашем случае фотоаппарата, передать без искажений и потерь одновременно яркие и темные участки изображения. Другими словами — это диапазон яркостей между самой темной и самой светлой точкой изображения, которую в состоянии зафиксировать устройство. На практике динамический диапазон характеризует возможность камеры выделять детали в тени и на свету.

Динамический диапазон в фотографии так же известен как «фотографическая широта». Если диапазон устройства мал, то какая то часть изображения не сможет оказаться правильно переданной. С технической точки зрения, в фотографии это обозначает, что часть градаций яркости изображения не будет зафиксирована фотопленкой или матрицей цифрового фотоаппарата и будет потеряна.

Например, при съемке интерьера комнаты с частью яркого окна — интервал по яркости отдельных участков очень велик. Фотопленка или матрица правильно передаст либо изображение в комнате, а окно будет забито не прорисованным белым либо, наоборот, окно и вид за окном прорисуется, а комната окажется черной. Другой пример, очень часто встречаемый — съемка пейзажа или архитектуры, когда вы получаете прорисованное сочное небо, но все остальное (например, лес, речка на переднем плане) погружено в глубокую тень или наоборот, лес прорисован замечательно, а небо превратилось в блеклое невыразительное пятно.

Происходит это потому, что разница между самой темной и самой яркой точкой самого изображения гораздо больше, чем диапазон между самой светлой и самой темной точкой, которую в состоянии зафиксировать ваш фотоаппарат.

В фотографии, динамический диапазон измеряется в стопах или ф-стопах (f-stop). Суть одна и та же. Под одним стопом понимается изменение экспозиции на одну ступень или говоря иначе — изменение светового потока вдвое. Например разница между двумя экспозициями при одинаковой выдержке и диафрагме 5.6 в первом случае и 8 во втором — и будет равна одному стопу.

Вернемся снова к примеру с пейзажем. Почему мы одновременно видим четко и лес со всеми деталями и небо с малейшими перистыми облачками? Потому что человеческий глаз способен различить разницу между самыми темными и самыми яркими участками в 12-14 ступеней, то есть динамический диапазон нашего глаза — 12-14 стопов. В фотографии же самый большой динамический диапазон имеет черно белая пленка — около 10 стопов. Цветная негативная пленка имеет динамический диапазон около 7 стопов, а слайдовая всего 4-5 стопов. Матрицы цифровых фотоаппаратов имеют различный динамический диапазон. На сегодняшний день, у самых дорогих моделей он достигает значения в 8 стопов, но у подавляющего большинства цифровиков диапазон составляет от 4 до 6 стопов.

На лицо проблема недостаточного динамического диапазона у наших фотокамер. А раз есть проблема, то должно быть и решение. О возможных решениях и пойдет речь далее. Но хотелось бы предупредить, что для полного понимания статьи вам желательно иметь хотя бы минимальные знания об экспозиции и минимальный опыт работы в Photoshop или другом графическом редакторе, особенно в работе со слоями и масками слоев.

Изменение динамического диапазона. Основа.

Для изменения динамического диапазона в фотографии традиционно используется градиентный, нейтрально серый фильтр. Часть этого фильтра абсолютно прозрачна, другая часть заполнена нейтрально серым. При этом нейтрально серый переходит в прозрачность плавно, градиентно. «Серая» часть фильтра ослабляет световой поток, тем самым снижая разницу контрастов изображения до значения сравнимого с динамическим диапазоном фотоаппарата. Все бы хорошо, но не на каждый фотоаппарат наденешь фильтр, да и что делать в сложных случаях, например, когда граница между темным и светлым участком изображения не совпадает с зоной «плавного перехода» фильтра, или когда темный участок вклинивается в светлый (например, высокий памятник на фоне яркого неба, или то же окно посреди стены в комнате).

Цифровая фотография дает гораздо больше возможностей увеличения динамического диапазона снимка. Об этих способах и пойдет речь далее. Но в начале об общем принципе, на котором основан любой, описанный далее, способ.

Для работы потребуется как минимум 2 версии одного и того же изображения — недоэкспонированная и переэкпонированная. На недоэкспонированной будут хорошо проработаны тени, а на переэкспонированной — детали в светлых областях. Затем, пользуясь Photoshop мы «сведем» эти версии в одну и расширим динамический диапазон итогового снимка за счет комбинирования «недодержанной» и «передержанной» версии. На английском подобная техника называется Image Blending, то есть «смешивание изображений».

Следует особо отметить, что изображение на обоих снимках должно отличаться ТОЛЬКО экспозицией. В противном случае вам вряд ли удасться «свести» 2 разных снимка в один. Получить разные версии можно разными способами:

1) Экспозиционная вилка или брейкетинг (braсketing), так же называемая «мультиэкспозиция» или «экспиловка». Сейчас эта функция есть во многих цифровых фотоаппаратах, а не только в дорогих моделях. При использовании брейкетинга, вы задаете «вилку» относительно «нормальной» экспозиции, например в +/- 1/3 ступени (+/- 1/3 EV) . В в этом случае фотокамера сделает не один, а сразу 3 снимка — один с «нормальной» экспозицией, второй с экспозицией увеличенной на 1/3 EV (передержанный) , третий с экспозицией уменьшенной на 1/3 EV (недодержанный).

2) Компенсация экспозиции . Суть похожа на брейкетинг. Только вы задаете не вилку, а просто смещение экспозиции в большую или меньшую сторону относительно «нормальной». И камера делает один снимок, но со «смещенной» экспозицией. В некоторых случаях это может быть удобнее чем брейкетинг, потому что вы сможете задать разное смещение для снимков. Например сделать переэкспонированный снимок со смещением в + 1 EV, а недоэспонированный со смещением в -2/3 EV.

3) Съемка в RAW формат . Самый простой способ получить необходимые «версии». Любой конвертор RAW имеет функцию компенсации экспозиции. Вам надо всего лишь отконвертировать RAW файл 2 раза, с разными установками компенсации экспозиции. С двумя полученными в результате файлами мы и будем работать далее. Но к сожалению RAW формат поддерживают далеко не все фотоаппараты.

4) Коррекция JPEG. Допустим у вас есть только JPEG файл. Тогда, в графическом редакторе, вы можете создать 2 версии используя, например, коррекцию уровней (Levels) или кривых (Curves). В одном случае путем коррекции «вытянем» темные участки, во втором светлые. Но не забывайте что формат JPEG «выкидывает» из графического файла всю «лишнюю» информацию, поэтому возможности по его «вытягиванию» весьма ограничены. Перед тем как начать корректировать JPEG файл, лучше переведите его в TIFF или BMP — качества фотографии это не прибавит, но при редактировании на изображение не будет влиять алгоритм сжатия JPEG.

Важное замечание для съемки с брейкетингом или компенсацией экспозиции — вы обязательно должны использовать штатив! Потому что достаточно мизерного смещения камеры в промежутке между снимками и вы не сможете нормально «свести» полученные снимки в итоговый. При съемке лучше выставить на фотокамере режим «приоритет диафрагмы» и пользоваться ручной фокусировкой или автофокусом по центральной точке. Таким образом снимки будут иметь одинаковую глубину резкости, сами кадры будут идентичны и будут иметь различие только в экспозиции, что нам и требуется.

Компенсация экспозиции в
конверторе RAW (Photoshop CS2).

Теперь приступим к главному — обработке полученных версий в Adobe Photoshop. В принципе основные способы обработки, описанные ниже, построены на работе со слоями (Layers) и маскированием, так что подойдет любой графический редактор, поддерживающий слои и маски слоев.

Открываем одновременно обе версии в Photoshop. Выбираем инструмент «Перемещение» и удерживая на клавиатуре Shift — перетаскиваем одно изображение поверх второго. SHIFT в данном случае нужен для того, чтобы верхний слой встал четко поверх нижнего, таким образом избавив нас от лишней работы по «подгонке» границ кадров. Теперь имеем одно изображение с двумя слоями,точно расположенными друг поверх друга — на одном слое недоэкспонированная версия, на другом переэкспонированная.

Способы описанные ниже рассчитаны на то, что переэкспонированная (темная) версия находится поверх недоэкспонированной. Но забегая вперед скажу — можно расположить слои наоборот, тогда все ваши действия так же будут «наоборот», например, в случае «рисования по маске», маску первоначально создать в режиме Reveal All а не Hide All и рисовать по ней не черной а белой кистью.

Теперь все предварительные работы закончены и можно приступать к «смешиванию».

Первый способ — рисование по маске

Самый «классический» способ, еще давным давно описанный на сайте Luminous Landscape . Располагаем слои друг над другом, как говорилось ранее.

Добавляем к верхнему слою маску в режиме Hide All (Скрыть все) через меню — Layer / Add Layer Mask / Hide All или удерживая ALT кликнув на иконке в палитре слоев. Теперь выбираем инструмент Кисть (Brush) и белый цвет для нее. Нам потребуется кисть достаточно большого размера, с размытыми краями.

Переключаемся на маску слоя (достаточно кликнуть на прямоугольной черной иконке маски у соответствующего слоя) и начинаем по ней «рисовать» кистью, по тем областям которые на наш взгляд излишне светлые на нижнем слое (небо и вода).

При этом мы на самом деле просто «открываем» те части темного верхнего слоя, где проходит кисть и наш верхний слой в этих местах становиться непрозрачный, закрывая нижний, светлый слой. За счет того что кисть имеет размытые края, переход к «прозрачности» получается плавный, что визуально скрадывает разницу тонов на разных слоях. Плавность зависит от степени размытости краев кисти и ее размера. Попробуйте интереса ради воспользоваться простой кистью, с четкими контурами и сразу увидите разницу.

Рисование по маске — один из самых точных способов, но и самый трудоемкий. Обратите внимание на ветки. Ветки и небо создают настоящий орнамент. По идее, чтобы получить идеальный конечный вариант, нам надо показать только небо, а ветки не трогать. Придется переключаться на более тонкую кисточку и выполнять весьма кропотливую и сложную работу по «обрисовыванию» веток.

Кстати в нашем примере удобнее делать как раз наоборот, то есть расположить «светлый» слой выше темного, создать маску в режиме «Показать все» и рисовать черной кистью по темным областям.

Хотя это и самый сложный способ, но знать его нужно. Есть более легкие способы, которые и описаны далее, позволяющие создать необходимую маску для верхнего слоя, но во многих случаях все равно придется выполнять «окончательную доводку» итогового снимка путем рисования по маске..

Второй способ — маска на базе слоя

Один из самых простых способов, так же описанный на Luminous Landscape . Так же как и ранее, вначале создаем наши слои и добавляем к верхнему слою маску. Только на этот раз маску создаем в режиме Reveal All (Показать все). После этого переключаемся на нижний слой, делаем «выделить все» (CTRL+A), затем копируем выделение в системный буфер (CTRL+C).

Теперь, удерживая клавишу ALT, кликаем на прямоугольной иконке нашей маски в палитре слоев. Все изображение стало белым. Мы переключились на режим редактирования маски. Вставляем на маску изображение из буфера (CTRL+V). Появилась наша фотография, но только в черно-белом виде- это и есть наша маска.

Собственно маска уже создана. Если вы снова переключитесь на нижний слой то увидите оба слоя уже в смешанном варианте. Но эта маска слишком «детальная» и грубая. Изображение получается «невнятным». Поэтому снова переключимся на маску и воспользуемся фильтром Gaussian Blur (размытие по Гауссу) . Меняя значение Gaussian Blur мы размываем маску, создавая плавные переходы и более общие «зоны маскирования», без резких границ.

Причем обратите внимание на то, что чем выше степень размытия, тем сильнее наша маска будет меняться сторону выделения ярких и темных областей фотографии.

В конце концов опять переключаемся на нижний слой и контролируем результат. Если результат в каких то областях все еще вас не удовлетворяет, отшлифуйте его при помощи дополнительного рисования по маске.

Третий способ — color range

Третий способ описывает Дмитрий Рудаков в photoshop /tutorials/dynamicrange/»>статье на сайте Photoscape. Так же как и прежде располагаем слои друг над другом, но маску пока не добавляем.

Затем воспользуемся Color Range (Диапазон цвета) из меню Select. В параметрах выберем Shadows (Тени), так как в нашем конкретном случае, мы будем маскировать затемненные области. После того как мы нажмем ОК, все теневые зоны на нашей фотографии окажутся выделенными. Если где то, что то оказалось забыто, или наоборот, захватили лишнего — это можно быстро подкорректировать при помощи Quick Mask (Быстрая маска) или вручную, инструментами для работы с выделенными областями.

Мы почти готовы для того чтобы создать маску слоя, но вначале надо немного «размыть» выделенную область, чтобы переход к прозрачности был плавный. Для этого следует выбрать функцию Feather (Размыть выделение) из меню Select. В появившемся меню вводим необходимое значение. При этом можно руководствоваться следующим правилом — чем больше мелких «перемешанных» деталей (веточки на фоне неба и воды в нашем случае) тем меньшее значение стоит вводить. Возможно вам потребуется попробовать разные значения, и экспериментальным путем добиться оптимального результата.

После того как выделенная область размыта, создаем маску в режиме Hide Selection (Скрыть выделенное) из меню Layers или кликая по иконке на палитре слоев, удерживая при этом Alt. Наша маска создана!

И опять же, если результат нужно подкорректировать, то выбираем мягкую кисть и переключившись на маску доделываем работу.

Результат

В итоге мы получили снимок, на котором и небо не «засвечено» и передний план хорошо различим, а не скрыт во мраке. За счет смещенной экспозиции на двух снимках, мы расширили динамический диапазон итогового изображения на 1.5-2 ступени.

Итоговый снимок, с расширенным
динамическим диапазоном

Вы могли заметить, что все описанные выше способы есть ни что иное, как создание необходимой слой-маски. Различие между всеми описанными способами в основном лишь в удобстве использования. Результат же будет примерно одинаков.

Главное — это понять саму идею, а способов создания маски можно придумать еще пару десятков.

После расширения диапазона мы можем продолжить работать уже с итоговой фотографией, править кривые, уровни, яркость, насыщенность и т.п.

Альтернативные способы

Смешивание изображений при помощи слой маски не единственная технология. Один из альтернативных способов описан в статье Константина Афанасьева — Цифровая камера — расширение динамического диапазона . В ней предлагается вначале определенным образом отредактировать кривые на слоях, а затем выставить для каждого слоя соответствующий режим наложения.

Кроме того, для совсем ленивых можно предложить «автоматизаторы», то есть различные plug-in, photoshop actions и отдельные программы для расширения «ДД», например:

  • Dynamic Range Increase — DRI Pro — небольшой плагинчик от Fred Miranda . К сожалению плагин платный и не имеет «пробной» версии. Но с другой стороны 20$ — не такие большие деньги за «удобство»
  • Erik Krause Actions — бесплатный набор action для фотошопа. Перед использованием настоятельно советую прочитать readme файл из архива с акшенами
  • Photomatix — отдельная программа которая кроме расширения динамического диапазона выполняет еще и другие полезные функции. Вроде бы может работать с RAW, но как то странно, не через основное меню
светочувствительных сенсоров фотоаппаратов. В связи с этим говорилось и о т. н. (фотопленки или матрицы неважно).

Теперь рассмотрим понятие динамического диапазона с физической точки зрения, т. е. исходя из устройства матрицы цифрового фотоаппарата.

Динамический диапазон ПЗС-матрицы.

Для того, чтобы сенсор был чувствителен к большому диапазону освещенностей объекта съемки, т. е. мог воспроизводить как темные (теневые) его стороны, так и светлые (яркости) адекватно, пропорционально, у каждого пиксела должна быть потенциальная яма достаточной емкости. Такая потенциальная яма должна быть способной удерживать минимальный заряд при попадании на света от слабо освещенной части объекта, и в то же время могла вмещать большой заряд если освещенность части объекта велика.

Эту способность потенциальной ямы накапливать и удерживать заряд определенной величины называют глубиной потенциальной ямы. Как раз глубиной потенциальной ямы определяется матрицы.


Схематичное изображение бокового дренажа.

Использование дренажа ведет к усложнению конструкции ПЗС-элементов, но это оправдано тем вредом, который наносится изображению благодаря блюмингу.

Еще одна проблема, ухудшающая качество изображения, получаемого ПЗС-матрицей - т. н. залипшие пикселы (stuck pixels), у нас их часто называют «битыми». Эти пикселы появляются при любой выдержке, в отличие от шума, имеющего хаотический характер, локализуются в одном и том же месте. Связаны они с некачественно изготовленными ПЗС-элементами, в которых даже при минимальном времени засветки происходит лавинообразный срыв электронов в потенциальную яму. Проявляются они на каждом снимке в виде точек, значительно отличающихся по цвету от рядом расположенных.