Что делают из молибдена. Физические и химические свойства молибдена

Молибден (Мо) — относится к категории тугоплавких редких металлов, атомный номер — 42 , атомная масса — 95,95, плотность — 9,3г/см3,температура плавления — 2622ОС, коэффициент линейного расширения — 5,49.10-6, удельная электропроводность — 22,7м/ом.мм2,удельное электрическое сопротивление — 0,0478ом/мм2.м (15ОС); 0,62 (2000ОС), модуль упругости — 35кг/мм2, предел прочности при растяжении — 140 — 160кг/мм2, относительное удлинение — 10-18% (до 100ОС); 0%(1000ОС); для монокристалла — 30%, предел текучести — 41-61кг/мм2, твёрдость по Бринелю — 160-180кг/мм2(неотожжённый); 240 — 250кг/мм2(прокатанный).

Молибден был открыт в 1778году шведским химиком К.Шееле, при работе с минералом молибденитом, который получил своё название от греческого слова «молибдос», что значит свинец, из-за малой твёрдости молибденита и свинцово-серый цвет. Шееле выделил молибденовую кислоту, а в 1781году в высокотемпературной печи был выплавлен металлический молибден.

Молибден мало распространён в природе — 3.10-4%, для него характерна высокая рассеянность. В природе, молибден входит в состав, главным образом, медно-молибденовых руд. Содержание молибдена в рудах обычно составляет сотые, даже тысячные и очень редко десятые доли процента. Ценным природным спутником молибдена в медно- молибденовых рудах является рений, который извлекают на стадии обогащения в молибденовый концентрат. Известно 20 молибденовых минералов, но 98% молибдена добывается из молибденита. Важнейшие месторождения молибдена содержат этот металл в виде минерала молибденита или молибденового блеска (MoSO2), реже молибден встречается в форме вульфенита (PbMoH4) и повелита (CaMoO4).

Химически чистый молибден представляет собой серовато-белый, тугоплавкий металл . Молибден хорошо поддаётся механической обработке, молибден хороший проводник электричества.

Компактный металлический молибден устойчив на воздухе до температуры около 400ОС, при большей температуре молибден интенсивно окисляется. С азотом воздуха молибден реагирует только при температуре1500ОС, с углеродом, СО — реагирует начиная от 800ОС. Галоиды реагируют с молибденом: фтор — на холоду, хлор — при тёмнокрасном калении, бром — при светлокрасном, йод — не реагирует. Сера, до 440ОС, не действует на металлический молибден.

Действие кислот: HNO3 концентрированная — медленно разъедает, HNO3 разбавленная — быстро растворяет, H2SO4 концентрированная холодная — слабо действует, H2SO4 горячая (200-250ОС) — быстро растворяет. HCl концентрированная кипящая — энергично растворяет, HCl разбавленная растворяет интенсивнее крепкой, в HF(крепкая, холодная и горячая) — молибден устойчив. Хороший растворитель молибдена: 5 объёмов HNO3+3 объёма H2SO4+2 объёма H2O.

Действие щелочей: в холодных растворах молибден устойчив, в горячих-несколько разъедается. Расплавленные щёлочи в присутствии окислителей (PbO2,KNO3 и других) интенсивно окисляют металлический молибден.

ПОЛУЧЕНИЕ.

Молибденовые руды подвергаются обогащению флотацией и гравитационными методами, полученный концентрат содержит до 85% MoS. Вредные примеси в концентрате и допустимые пределы их содержания: не более 0,5% As,Sb,Bi и Ba, не более 0,2% Co и Cu, не более 0,5% P и Sn. Концентрат обжигается до окисла MO2, многократно выщелачивается аммиаком. Выщелачивание проводят в железных герметичных аппаратах барабанного типа или в специальных чанах оборудованных мешалками. Раствор освобождается от примесей добавкой многосернистого аммония, фильтруется, упаривается. Во время охлаждения из раствора выпадают кристаллы молибдата аммония, очищаемые перекристаллизацией и обрабатываемые соляной кислотой для дальнейшей очистки и перевода молибдена в молибденовую кислоту, после прокалки которой получается чистый молибденовый ангидрид (MoO3).

Металлический молибден в форме порошка получается восстановлением ангидрида в токе водорода, затем порошок прессуется, спекается и отковывается в штабики.

Вообще, металлургическую переработку молибденовых концентратов можно проводить с получением ферромолибдена для чёрной металлургии или для получения химических соединений различного состава и чистоты — молибдена MoO3, парамолибдата аммония, молибдатов натрия, кальция используемых в производстве компактного молибдена, легированных сталей и чугунов или в химической промышленности.

Непременной составной частью всех общепринятых схем переработки молибденовых концентратов является их окислительный обжиг, для перевода молибдена из сульфидной формы в оксидную — триоксид молибдена MoO3. Дальнейшая обработка огарка зависит от назначения и вида конечного продукта металлургической технологии. Для легирования сталей и чугунов обычно используется ферромолибден, CaMoO4 и триоксид молибдена MoO3. Основным способом переработки огарка на ферромолибден является металлотермическая плавка с использованием кремния и алюминия в качестве восстановителей.

Технология получения компактного ковкого молибдена из обожжённых концентратов включает в себя следующие основные технологические операции: получение чистого триоксида молибдена, получение молибденового порошка восстановлением MoO3, перевод молибдена в компактное состояние плавкой или методами порошковой металлургии.

Возможно прямое разложение молибденовых концентратов без предварительного обжига, например азотной кислотой, автоклавным выщелачиванием в щелочном растворе или другими методами.

Физические методы очистки молибдена основаны на летучести окиси молибдена MoO3. Технический продукт молибденового концентрата расплавляют и из него, подаваемым в печь воздухом, отгоняют пары окисиMoO3, которые,затем, конденсируются в специальном холодильнике. Получаемая таким образом окись молибдена имеет чистоту до 99,9%. Основной способ получения металлического молибдена, также, как и вольфрама, основан на восстановлении водородом окиси молибдена MoO3. Этот метод не вносит дополнительно загрязнений, обеспечивая получение чистого металла. Водородом, иногда, восстанавливают даже молибденовые концентраты, но металл получается загрязнённым различными примесями.

Окислы молибдена, также, как и окислы вольфрама можно восстанавливать углеродом и углеродосодержащими газами, но образующийся при этом способе металл содержит до 5% карбидов и разных примесей.

Полученный порошок металлического молибдена превращают в компактный металл способами аналогичными тем, которые применяются для получения компактного вольфрама. Процесс проводят в такой же аппаратуре, но с другими температурными режимами. Первое спекание проводят при температуре 1200ОС в атмосфере водорода. Высокотемпературное спекание молибденовых штабиков осуществляется в тех же аппаратах что и сварка вольфрамовых штабиков при температуре 2200-2400ОС.

Механическая обработка молибденовых щтабиков состоящая из ковки и волочения, или прокатки на лист, производится на том же оборудовании что и для вольфрама, при температурах ковки и волочения 1200ОС, т.е. ниже чем у вольфрама. Для получения крупных слитков и заготовок молибден плавят в вакуумных дуговых электропечах. Электрическая дуга возбуждается между электродом из спечённого молибденового порошка и жидким металлом, находящимся в охлаждаемом водой медном кристаллизаторе.

ПРИМЕНЕНИЕ.

Примерно 90-95% добываемого молибдена используется в металлургии, в качестве легирующей добавки в стали и специальные сплавы. Добавки повышают закаливаемость стали, придают ей однородную мелкозернистую структуру, увеличивают её пластичность, прочность, износостойкость и вязкость. Легированные молибденом стали разделяют на легированные, или конструкционные стали общего назначения (на 1 тонну стали расходуется до 10 килограмм молибдена) и легированные стали специального назначения-нержавеющие, жаропрочные(расход на одну тонну стали до 70 килограмм молибдена), быстрорежущие (расход молибдена до 80 килограмм на 1 тонну). Легированные молибденом конструкционные стали используются в автомобильной, тракторной, авиационной промышленности, в котло- и турбостроении. Закалённые стали высокой прочности и пластичности применяются для изготовления брони и орудийных стволов. Около половины молибдена в мире идёт на производство сплавов и четверть — на стали. Молибден применяется в приготовлении сверхтвёрдых сплавов — стеллитов. Чистый металлический молибден используется в радиотехнике и электротехнике, в радиоаппаратуре, в рентгеновских трубках, в ракетостроении, при изготовлении деталей атомных реакторов.

Приблизительно двадцатая часть металлического молибдена используется в химической, нефтеперерабатывающей, керамической, стекольной текстильной промышленности, в медицине. Триоксид молибдена применяется для очистки нефтепродуктов от вредных примесей, добавка молибдена к стеклу придают ему тугоплавкость.

В чистом виде молибден применяют в виде ленты или проволоки для изготовления нагревательных элементов, работающих в атмосфере водорода при температуре до 1600ОС. Молибденовый тонкий лист и проволоку широко используют в радиоэлектронной промышленности и рентгенотехнике, для изготовления деталей электронных ламп, рентгеновских трубок и других электронных приборов. Крупные слитки молибдена используют для изготовления лопаток турбин и ответственных деталей ракетных двигателей и корпусов ракет.

Молибден отличающийся высокой прочностью и малым захватом тепловых нейтронов может служить конструкционным материалом в энергетических ядерных реакторах. В стекольной промышленности молибден применяется в качестве электродов (нагревателей), мешалок и других деталей печей для варки стекла.

В сравнительно небольших количествах, в разных отраслях, находит применение ряд химических соединений молибдена. Дисульфид MoS2 и диселенид MoSe2 используются в качестве смазки трущихся деталей, работающих в диапазоне температур от -45 до+400ОС.

Химические соединения молибдена используются,также, в качестве пигментов в лакокрасочной и лёгкой промышленности для изготовления красок и лаков для окраски тканей и мехов.

Сплавы молибдена с кобальтом и хромом используют в хирургии для замены повреждённых суставов. Молибден входит в состав растительных и животных организмов, являясь необходимым элементом их жизни и развития.

Подтверждённые мировые запасы молибдена на начало 2014 года составляют 11 миллионов тонн, всего в недрах земной коры содержится до 39 миллионов тонн молибдена. Всего в мире, на сегодняшний день, добывается порядка 270 тысяч тонн молибдена в год. В РФ запасы молибдена оцениваются в 0,25 миллионов тонн, а добывается — 4,8 тысяч тонн в год. Российские месторождения молибдена характеризуются существенно более низким качеством руд, чем в зарубежных странах — среднее содержание молибдена в них составляет 0,058%.

Молибден по классификации в периодической таблице Менделеева относится к IV группе элементов. Имеет атомарный номер 42, а масса его атома равна 95,94. принято обозначать символом «Мо».

Молибден – это редкоземельный металл. Его объем составляет порядка 0,00011% от общей массы земли. В чистом виде имеет стальной сероватый цвет, в диспергированном – серовато-черный.

Молибден, как металл, в природе не встречается. Он содержится в минералах, которых на сегодняшний день известно порядка двадцати. Преимущественно это молибдаты, которые образуются в кислотной магме и гранитоидах.

Сырье, из которого производится металлический молибден – молибденовые концентраты. В их составе данного элемента содержится около 50%. Также в них содержатся: сера ~ 30%, оксид кремния (до 9%) и около 20% прочих примесей.

Предварительно концентрат обжигают с целью дополнительного окисления. Процесс проводят в печах двух типов: многоподовых или кипящего слоя. Температура обжига 570 °С — 600 °С. В результате чего получается огарок — МоО 3 и примеси.

На следующем этапе удаляют примеси для получения чистого оксида молибдена. Применяются два способа:

  1. Возгонка при температуре 950 °С — 1100 °С.
  2. Химическое выщелачивание. Суть способа в том, что при взаимодействии с аммиачной водой устраняются примеси меди и железа и получается карбид молибдена, который кристаллизуют выпаркой или нейтрализацией. Далее карбид нагревают и выдерживают при температуре до 500°С. На выходе – чистый оксид МоО3, в котором содержание примесей всего 0,05%.

Производство молибдена основано на восстановлении МоО3. Процесс проводят в два этапа:

  1. В трубчатой печи при температуре 550°С — 700°С в потоке сухого водорода происходит отделение атомов кислорода.
  2. Далее температура поднимается до 900°С — 1000°С и происходит окончательное восстановление. Полученный металл находится в виде порошка.

Для получения монолитного металла пользуются плавлением или спеканием порошка. Плавку используют, когда получают заготовки массой от 500 кг. Процесс производят в дуговых печах с охлаждаемым тигелем, в который подается расходуемый электрод из ранее спеченных штабиков.

Порошковое спекание – это прессование в атмосфере водорода при высоких значениях давления (2000-3000 атмосфер) и температуры (1000°С — 1200°С). Полученные штабики, подвергаются спеканию при высоких температурах равных 2200°С — 2400°С. В дальнейшем молибдену придается необходимая форма за счет обработки давлением – ковкой, прокаткой, протяжкой.

Широко в промышленности используется ферромолибден, в котором до 60-70% молибдена, а оставшееся — железо. Его получают путем введения в сталь молибденовых присадок. Сплав получают путем восстановления огарка силикатом железа с добавками стальной стружки и железистой руды.

Физические свойства

Использование молибдена зависит от его свойств и характеристик. Присущие физические свойства молибдена приведены ниже:

  • тип металла — высокотемпературная плавка;
  • молибденовый цвет – свинцовый;
  • плотность молибдена — 10,2 г/cм 3 ;
  • плавление при температуре — 2615°С;
  • закипание при температуре — 4700°С;
  • проводимость тепла — 143 Вт/(м·К);
  • тепловая емкость — 0,27 кдЖ/(кгК);
  • энергия для плавления — 28000 Дж/моль;
  • энергия для испарения — 590000 Дж/моль;
  • линейное расширение, коэффициент — 6·10 -6 ;
  • электрическое сопротивление — 5,70 мкОм·см;
  • расчетный объем — 9,4 см 3 /моль;
  • усилие сдвига — 122·10 ·6 Па;
  • твердость — 125 НВ;
  • магнитная проницаемость -90·10 -6 .

Точению данный металл подвергается не часто, но обработка ведется стандартизованным инструментом.

Химические свойства

Молибден, химические свойства которого приведены ниже, имеет следующие характеристики:

  • радиус валентности — 130·10 -12 м;
  • ионный радиус — (+6e) 62 (+4e) 70·10 -12 м;
  • электрическая отрицательность — 2,15;
  • потенциал электрический – 0;
  • валентности при окислении — 2-3-4-5-6
  • валентность молибдена – 6;
  • температура начала окисления — 400°С;
  • окисление до МоО3 при температуре — 600°С и выше;
  • реакция с водородом – нейтральная;
  • температура реакции с хлором – 250°С;
  • температура реакции с фтором – комнатная;
  • температура реакции с серой – 440°С;
  • температура реакции с азотом — 1500°С.

С кислородом элемент образует два основных оксида:

  • МоО 3 – кристаллическая форма белого цвета
  • МоО 2 – серебристого цвета.

Молибден MoS 2

Свойства растворимости молибдена в химических растворах: растворим в щелочах и кислотах при нагревании. Это способствует получению различных соединений или его очищению.

Обработка молибдена

Обработка молибдена затруднена в связи с невысокой вязкостью при низких температурах. Также он имеет малую пластичность, поэтому для его обработки применяются следующие методы:

  1. горячее деформирование:
    • ковка;
    • прокатка;
    • протяжка;
  1. термообработка;
  2. механическая обработка.

При обработке небольших заготовок используются обжимные машины. Крупные заготовки прокатываются на малых станах или получают форму на протяжных станках.

Если возникает необходимость механической обработки резанием, то механическая обработка молибдена ведется инструментом, изготовленным из марок быстрорежущих сталей. Заточка углов инструмента при токарной обработке должна соответствовать углам заточки для обработки чугуна.

Термообработка молибдена характеризуется высокой прокаливаемостью из-за его содержания в сталях. Проведенная закалка повышает твердость и износоустойчивость ответственных деталей.

Применение

Около 3⁄4 всего производимого редкоземельного металла используется как легирующий элемент при производстве сталей. Оставшаяся 1⁄4 часть используется в чистом виде и в химических соединениях. Применение он нашел во многих отраслях промышленности.

  1. Космическая область и авиастроение. Изделия из молибдена и его сплавов нашли применение для облицовки и изготовления головок ракет и носов самолетов, летающих на скоростях выше звуковых. Использование как конструкционный материал – это обшивка, а как тепловой экран – головная часть.
  2. Металлургия. Применение молибдена в литейном производстве и металлургии обусловлено высокой прокаливаемостью. Следовательно, повышается прочность, коррозионная стойкость, вязкость. В его сплавах с кобальтом или хромом заметно повышается твердость. Из легированных сталей с молибденовыми добавками изготавливаются ответственные детали. Его добавляют в жаро- и кислотоустойчивые сплавы. Поэтому большинство инструментов, производящих горячую обработку, изготавливаются из сталей, легированных Мо.
  3. Химическая промышленность. Из материалов с Мо, обладающих кислотоустойчивостью, изготавливают различные аппараты для производства кислот или их переработки. Нагреватели печей, внутри которых водородная среда также изготавливаются из молибденовых сплавов. Также данный металл можно найти в составе некоторых лаков, красок, эмалей и термически наносимых глазурей. Используют металл и как катализатор для химических реакций.
  4. Радиоэлектроника. Мо — незаменимый материал для изготовления электроосветительных и электронно-вакуумных приборов, среди которых многим известны радиолампы.
  5. Медицина. В медицине элемент используется при изготовлении рентгеновских аппаратов.
  6. Изделия из стекла. Из-за плавления при высокой температуре Мо используют при плавлении стекла.

Марки молибдена и его сплавов

Сплавы молибдена чаше применяются в промышленности, чем чистый металл. Среди них выделяются:

  • металл с чистотой 99,96%, который используется для производства электронных устройств, маркируется МЧ;
  • металл, получаемый плавкой под вакуумом, маркируется молибден МЧВП;
  • для производства проволоки, используемой в источниках света, применяется металл под маркой МРН, где его содержание равно 99,92%;
  • при введении присадки, кремниевая щелочь, молибден маркируется МК;
  • в Мо вводится цирконий (Zr) или титан (Ti) – марка ЦМ;
  • при введении рения – МР;
  • вольфрам с Мо – МВ.

Плюсы и минусы молибдена

Среди достоинств следует отметить следующие:

  • низкая плотность, а отсюда большая прочность;
  • высокий показатель модуля упругости;
  • термоустойчивость;
  • жаростойкость;
  • коррозионная стойкость;
  • практически не расширяется при нагревании.

  • после сварки швы обладают хрупкостью;
  • снижение температуры уменьшает пластичность;
  • механическое упрочнение возможно до 8000 °С.

История молибдена

История открытия молибдена началась в 1778 году, когда химик из Швеции Карл Шееле получил минеральный молибденит в результате прокаливания молибденовой кислоты (calorizator). Через несколько лет, в 1781 году П.Гьельм получил молибден в виде металла, чистый же молибден был получен только в 1817 году Й. Берцелиусом.

По причине схожести внешнего вида минерального молибдена со свинцовым блеском, сначала их называли одинаково - от древнегреческого μόλυβδος, что означает свинец.

Молибден является элементом VI группы V периода периодической системы химических элементов Д.И. Менделеева, имеет атомный номер 42 и атомную массу 95,94. Принятое обозначение - Mo (от латинского Molybdaenum ).

Нахождение в природе

Молибден в свободном виде в природе не распространён. Имеется в виде нескольких десятков известных минералов в земной коре, морской и речной воде, в нефти, углях, мизерное количество в воздухе. Основные месторождения молибдена находятся на территории США, Мексики, Чили, Канаде, России и Армении.

Физические и химические свойства

Молибден является переходным мягким металлом светло-серого цвета с характерным металлическим блеском. Устойчив во время нахождения на воздухе при комнатной температуре, процесс окисления начинается при температуре выше 400˚с.

Суточная потребность в молибдене меняется в зависимости от возраста, на неё влияют также физическая нагрузка и масса тела. Норма для детей с рождения и до 10-летнего возраста составляет 15-150 мкг в день, для взрослых - 75-250 мкг, после 70-ти лет потребность в молибдене снижается и не должна превышать 200 мкг в сутки. Обычно необходимое количество данного микроэлемента человек получает с пищей, поэтому дополнительный приём не требуется.

Полезные свойства молибдена и его влияние на организм

Молибден важен для:

  • Стимулирования деятельности ферментов, обеспечивающих синтез кислот и дыхание тканей;
  • Поддержания здорового состояния зубов;
  • Улучшения качественного состава крови, увеличения уровня гемоглобина крови;
  • Регулирования обменных процессов;
  • Выведения мочевой кислоты, предотвращения возникновения подагры;
  • Профилактики импотенции и других расстройств мужской половой сферы;
  • Участия в синтезе витаминов ,
  • Профилактики диабета.

Взаимодействие с другими

Молибден является важной частью фермента, отвечающего за утилизацию . При избытке молибдена нарушается утилизация и синтез витамина .

Главными поставщиками молибдена в организм человека являются зелёные листовые овощи ( , ), злаки, крупы ( , ) и бобовые ( , ). Присутствует молибден в , рыбе, орехах и ягодах.

Применение молибдена в жизни

Основное применение молибдена - металлургическая промышленность, также используется при производстве ламп накаливания.

Признаки избытка молибдена

Чрезмерное количество молибдена случается у работников металлургической сферы промышленности, проявляется так называемой молибденовой подагрой, которая обусловлена повышением мочевой кислоты в крови.

Недостаточное количество молибдена (дефицит) встречается крайне редко, как правило, в регионах, где в почвах не хватает минерала или у людей со скудным рационом питания. Признаками нехватки молибдена являются: замедление роста, выпадение волос, возникновение отёков, дряблость кожи и мышц, дерматиты и грибковые поражения кожных покровов.

Оно произошло лишь в последней четверти прошлого века. В 1885 г. на Путиловском заводе выплавили сталь, в которой содержалось 0,52% углерода и 3,72% молибдена. Свойства ее оказались почти такими же, как у вольфрамовой стали; прежде всего привлекала ее большая твердость и как следствие - пригодность для изготовления металлорежущего инструмента. Всего 0,3% молибдена увеличивали твердость стали в такой же степени, как 1% вольфрама, но это узнали уже позже.

Влияет и на качество чугуна. Добавка молибдена позволяет получить мелкокристаллический чугун с повышенной прочностью и износоустойчивостью.

В 1900 г. на Всемирной промышленной выставке в Париже была выставлена сталь, содержавшая и обладавшая замечательным свойством: резцы из нее закалялись в процессе работы. А за 10 лет до этого, в год столетия со дня открытия элемента № 42, был разработан процесс выплавки ферромолибдена - сплава молибдена с железом. Добавляя в плавку определенные количества этого сплава, начали выпускать специальные сорта стали. наряду с хромом, никелем, кобальтом нашел широкое применение как легирующий элемент, причем сталь легируют обычно не техническим молибденом, а ферромолибденом - так выгоднее.

Тем временем приближалась первая мировая война. Военные ведомства европейских держав требовали от промышленности крепкой брони для кораблей и укреплений, особо прочной стали для пушек. Орудийные стволы начали изготовлять из хромомолибденовых и никельмолибдено-вых сталей, отличающихся высоким пределом упругости и в же время поддающихся токарной обработке с высокой степенью точности. Из хромомолибденовой делали бронебойные снаряды, судовые валы и другие важные детали.

Фирма «Винчестер» применила эту сталь для изготовления винтовочных стволов и ствольных коробок. Появлялось все больше тяжелых моторов. Для них нужны были крупные шариковые и роликовые подшипники, выдерживающие большую нагрузку. И для этой цели подошли хромомолибденовые и никельмолибденовые стали. В наше время, когда ежегодно добывают из недр Земли миллионы тонн молибденовых руд, 90% всего молибдена поглощает черная металлургия.

Молибден и авиация

Когда самолеты перестали делать из дерева и парусины, понадобились не только мощные моторы и легкие металлические листы обшивки, но и жесткий каркас из металлических трубок. Вначале авиация довольствовалась трубами из углеродистой стали, но размеры самолетов все росли… Потребовались трубы значительно большего диаметра, но с малой толщиной стенки. Трубы из хромована-диевой стали в принципе могли бы подойти, но эта сталь не выдерживала протяжки до нужных размеров, а в местах сварки такие трубы при охлаждении «отпускались» и теряли прочность.

Выйти из этого тупика удалось благодаря хромомолибденовой стали. Трубы из нее хорошо протягивались, прекрасно сваривались и, что главное, в тонких сечениях не «отпускались» при сварке, а, наоборот, самозакалялись на воздухе. Количество молибдена в стали, из которой их протягивали, было крайне невелико: 0,15-0,30%.

Электричество и радиотехника

Нити накаливания обычных электрических ламп делают из вольфрама, более тугоплавкого, чем все прочие , и дающего наибольшую светоотдачу. Но если впаять вольфрамовую нить в стеклянный стерженек в центре лампочки, он вскоре треснет из-за теплового расширения нити.

Когда исследовали физические свойства молибдена, обнаружили, что у него ничтожно малый коэффициент теплового расширения. При нагреве от 25 до 500° С размеры молибденовой детали увеличатся всего на 0,0000055 первоначальной величины. И даже при нагреве до 1200° С молибден почти не расширяется. Поэтому вольфрамовые нити накаливания стали подвешивать на молибденовых крючках, впаянных в . В дальнейшем молибден сыграл еще большую роль в электровакуумной технике. К вакуумным приборам электрический ток подводится через молибденовые прутки, впаянные в специальное , имеющее одинаковый с молибденом коэффициент теплового расширения (это носит название молибденового) .

Жаропрочные сплавы

Техника сверхскоростных и космических полетов ставит перед металлургами задачу получать все более жаростойкие материалы. Прочность при высоких температурах зависит прежде всего от типа кристаллической решетки и, конечно, от химической природы материала. Температурный предел эксплуатации титановых сплавов 550- 600° С, молибденовых - 860, а титано-молибденовых - 1500° С!

Чем объяснить столь значительный скачок? Его причина - в строении кристаллической решетки. В объемно-центрированную структуру молибдена внедряются посторонние атомы, на этот раз атомы титана. Получается так называемый твердый раствор внедрения, структуру которого можно представить так. Атомы молибдена, металла-основы, располагаются по углам куба, а атомы добавленного металла, титана,-в центрах этих кубов. Вместо объем-по-центрированной кристаллической решетки появляется гранецентрированная, в которой процессы разупрочнения под действием температур происходят намного менее ий-

В таком целенаправленном изменении кристаллической структуры металлов состоит один из основных принципов легирования.

Другая причина столь резкого увеличения жаропрочности кроется в том, что сплавляются очень непохожие - молибден и . Это общее правило: чем больше разница между атомами легирующего металла и металла-основы, тем прочнее образующиеся связи. Металлическая связь как бы дополняется химической.

Легирование, однако, вовсе не последнее слово в решении проблемы жаропрочных сплавов. Уже в наше время обнаружены необычайные свойства нитевидных кристаллов, или «усов». Прочность их по сравнению с металлами, обычно используемыми в технике, поразительно велика. Объясняется это тем, что кристаллическая структура усов практически лишена дефектов, и техника сверхскоростных полетов берет на вооружение усы, создавая с их помощью композиционные жаропрочные материалы. Один из таких материалов - это окись алюминия, армированная молибденовыми усами, другой представляет собой начиненный топ же арматурой технический . По сравнению с обычным титаном этот материал может работать в жестких условиях в 1000 раз дольше.

Что можно противопоставить огненному смерчу, обрушивающемуся на космический корабль при входе в плотные слои атмосферы? Прежде всего теплозащитную обмазку и охлаждение. Да, охлаждение, подобное в принципе охлаждению автомобильных двигателей с помощью радиаторов. Только работать здесь должны более энергоемкие процессы. Много тепла нужно на испарение веществ, но еще больше на сублимацию - перевод из твердого состояния непосредственно в газообразное. При высоких температурах сублимировать способны молибден,

Физические и химические свойства молибдена.
Молибден кристаллизуется в кубической объёмно-центрированной решётке с периодом а = 3,14 . Атомный радиус 1,4 , ионные радиусы Mo4+ 0,68 , Mo6+ 0,62 . Плотность 10,2 г/см3 (20 °C); tпл 2620 = 10 °C; tkип около 4800 °C. Удельная теплоёмкость при 20-100 °C 0,272 кдж/(кгЧК), т. е. 0,065 кал/(гЧград). Теплопроводность молибдена при 20 °C 146,65 вт/(смЧК), т. е. 0,35 кал/(смЧсекЧград). Термический коэффициент линейного расширения молибдена (5,8-6,2) Ч10-6 при 25-700 °C. Удельное электрическое сопротивление молибдена 5,2Ч10-8 омЧм, т. е. 5,2Ч10-6 омЧсм; работа выхода электронов 4,37 эв. молибден парамагнитен; атомная магнитная восприимчивость ~ 90Ч10-6 (20 °C).
Механические свойства молибдена зависят от чистоты металла и предшествующей механической и термической обработки. Твёрдость молибдена по Бринеллю 1500-1600 Мн/м2, т. е. 150-160 кгс/мм2 (для спечённого молибденового штабика), 2000-2300 Мн/м2 (для кованого молибденового прутка) и 1400-1850 Мн/м2 (для отожжённой молибденовой проволоки); предел прочности для отожжённой молибденовой проволоки при растяжении 800-1200 Мн/м2. Модуль упругости молибдена 285-300 Гн/м2. Молибден более пластичен, чем вольфрам. Рекристаллизующий отжиг не приводит к хрупкости молибдена.
На воздухе при обычной температуре молибден устойчив. Начало окисления молибдена(цвета побежалости) наблюдается при 400 °C. Начиная с 600 °C металл быстро окисляется с образованием MoO3. Пары воды при температурах выше 700 °C интенсивно окисляют молибден до MoO2. С водородом молибден химически не реагирует вплоть до плавления. Фтор действует на молибден при обычной температуре, хлор при 250 °C, образуя MoF6 и MoCl5. При действии паров серы и сероводорода соответственно выше 440 и 800 °C образуется дисульфид молибдена MoS2. С азотом молибден выше 1500 °C образует нитрид молибдена (вероятно, Mo2N).
Твёрдый углерод и углеводороды, а также окись углерода при 1100-1200 °C взаимодействуют с металлом с образованием карбида Mo2C (плавится с разложением при 2400 °C). Выше 1200 °C молибден реагирует с кремнием, образуя силицид MoSi2, обладающий высокой устойчивостью на воздухе вплоть до 1500-1600 °C (его микротвёрдость 14 100 Мн/м2).
В соляной и серной кислотах молибдена несколько растворим лишь при 80-100 °C. Азотная кислота, царская водка и перекись водорода медленно растворяют металл на холоду, быстро - при нагревании. Хорошим растворителем молибдена служит смесь азотной и серной кислот. Вольфрам в смеси этих кислот не растворяется. В холодных растворах щелочей молибден устойчив, но подвержена коррозии при нагревании. Конфигурация внешних электронов атома Mo4d55s1, наиболее характерная валентность 6.
Известны также соединения 5-, 4-, 3- и 2-валентиого молибдена.
Молибден образует два устойчивых окисла - трёхокись молибдена MoO3 (белые кристаллы с зеленоватым оттенком, tпл 795 °C, tkип 1155 °C) и двуокись MoO2 (тёмно-коричневого цвета). Кроме того, известны промежуточные окислы, соответствующие по составу гомологическому ряду Mon O3n-1 (Mo9O26, Mo8O23, Mo4O11); все они термически неустойчивы и выше 700 °C разлагаются с образованием MoO3 и MoO2.
Трёхокись молибдена MoO3 образует простые (или нормальные) кислоты молибдена - моногидрат H2MoO4, дигидрат H2MoO4 Ч H2O и изополикислоты - H6Mo7O24, H4Mo6O24, H4Mo8O26 и др. Соли нормальной кислоты называются нормальными молибдатами, а поликислот - полимолибдатами. Кроме названных выше,
известно несколько надкислот молибдена - H2MoOx; (x - от 5 до 8) и комплексных гетерополисоедипений с фосфорной, мышьяковой и борной кислотами. Одна из распространённых солей гетерополикислот - фосфоромолибдат аммония (MH4)3 [Р (Mo3O10)4] Ч 6H2O. Из галогенидов и оксигалогенидов молибдена наибольшее значение имеют фторид MoF6 (tпл 17,5 °C, tkип 35?C) и хлорид MoCI, (температура плавления 194 °C, температура кипения 268 °C). Они могут быть легко очищены перегонкой и используются для получения
молибдена высокой чистоты.
Установлено существование трёх сульфидов молибдена - MoS3, MoS2 и Mo2S3. Практическое значение имеют первые два. Дисульфид молибдена MoS2 встречается в природе в виде минерала молибденита, который получают действием серы на молибден или при сплавлении MoO3 с содой и серой. Дисульфид молибдена практически нерастворим в воде, HCl, разбавленной H2SO4. Распадается выше 1200 °C с образованием Mo2S3.

Молибден относится к тугоплавким металлам, ковкий и пластичный металл, является переходным элементом. Механические свойства, как и у большинства металлов, определяются чистотой металла и предшествующей механической и термической обработкой (чем чище металл, тем он мягче). Наличие примесей увеличивает твердость и хрупкость металла. Обладает крайне низким коэффициентом теплового расширения.
Внешний вид металлического молибдена зависит от способа его получения. Компактированный (спеченный) молибден без обработки (в виде слитков, штабика и заготовок под прокатку молибдена) - довольно темный металл, допускаются следы окисления. Молибден в виде проката бывает различных цветов: от темного, почти черного, до серебристого (зеркального). Все зависит от обработки металла. Молибденовый прокат обрабатывают путем: точения, шлифования, химической очистки (травления) и электрополировки. Молибденовый порошок имеет темно-серый цвет.
По прочности молибден несколько уступает вольфраму, но легче поддается как механической обработке, так и обработке давлением.
Молибден и его сплавы характеризуются высоким модулем упругости, малым температурным коэффициентом расширения, хорошей термостойкостью, малым сечением захвата тепловых нейтронов. Электропроводность молибдена выше, чем у железа, но ниже, чем у меди. Молибден более пластичен, чем вольфрам. Рекристаллизующий отжиг не приводит к хрупкости металла. Модуль упругости для молибдена 285-300 ГПа.
В совершенно чистом состоянии компактный молибден пластичен, ковок, тягуч, довольно легко подвергается штамповке и прокатке. При высоких температурах (но не в окислительной атмосфере) прочность молибдена превосходит прочность большинства остальных металлов. При загрязнении углеродом, азотом или серой молибден, подобно хрому, становится хрупким, твердым, ломким, что существенно затрудняет его обработку. Водород очень мало растворим в молибдене, поэтому не может заметно влиять на его свойства. Молибден - хороший проводник электричества, он в этом отношении уступает серебру всего в 3 раза. Электропроводность молибдена больше, чем у платины, никеля, ртути, железа и многих других металлов. Здесь можно подчеркнуть роль псевдосплавов молибдена с медью, а также так называемых биметаллов медь-молибден, триметаллов (ламинита) из медь-молибден-медь сплавов.

Физические и химические свойства молибдена

Свойство

Значение

Атомный номер

Атомная масса, а.е.м. (молярная масса, г/моль)

Плотность (при н. у.), г/см3

Температура плавления, K

Температура кипения, К

Теплота плавления, кДж/моль

Теплота испарения, кДж/моль

Молярный объем, см3/моль

Молярная теплоемкость, Дж/(K·моль)

Параметр элементарной ячейки, нм

Атомный диаметр, нм

Радиус атома, пм

Ковалентный радиус, пм

Радиус иона, пм

(+6e) 62 (+4e) 70

Удельная теплоемкость, Дж/(г·К)

Коэффициент линейного расширения, 10-6 К-1

Электросопротивление, мкОм·см

Модуль Юнга, ГПа

Модуль сдвига, ГПа

Коэффициент Пуассона

Твердость, НВ

Электронная конфигурация

Электроотрицательность, (шкала Полинга)

Электродный потенциал

Степени окисления

Энергия ионизации, кДж/моль (первый электрон, эВ)

Структура решетки

Кубическая объемноцентрированная

Параметры решетки, A

Температура Дебая, K

Теплопроводность, Вт/(м·К)