Что такое черная дыра. Все о черных дырах

Черные дыры во Вселенной

В научно-популярной литературе, статьях о Вселенной часто можно встретить термин «черная дыра». У читателя, впервые прочитавшего это словосочетание, сразу возникает образ, скажем, отверстия в стене, отгораживающей темную комнату, иначе, обыкновенная дырка. Упоминание о дырах во Вселенной, первоначально также ассоциируется с неким отверстием в небесах. Последнее суждение отчасти верно, но физическая сущность черной дыры гораздо сложнее, чем может показаться на первый взгляд. Так что же такое черная дыра? В современной науке черной дырой принято называть область пространства-времени, в которой гравитационное поле (тяготение) столь сильно, что ни один объект (даже излучение) не может вырваться из нее. Название же «черная дыра» ввел в обиход в 1968 году американский физик Джон Уилер (John A. Wheeler) в своей статье об этих удивительных небесных объектах. Новый термин сразу стал популярен, заменив собой использовавшиеся до того названия «коллапсар» и «застывшая звезда». Значит, эти небесные объекты попросту подобие звезды (черные шары?), но с очень сильным полем тяготения? Но это будет слишком простым (и не совсем верным) описанием, пожалуй, самых таинственных объектов во Вселенной. Чтобы глубже понять, что же это такое, вернемся ненадолго во времена великого физика Исаака Ньютона, открывшего закон всемирного тяготения. Легенда о яблоке, упавшем на голову Ньютона, может носить спорный характер, но, как бы там ни было, гениальная догадка ученого позволила вывести закон об универсальной силе, действию которой подвержено абсолютно все! Поле тяготения действует не только на объемные тела, которые притягиваются друг к другу, но на микрочастицы и даже на свет. Это очень важный момент, самым кардинальным образом связанный с изучением свойств черных дыр. Первым, кто допустил существование невидимых звезд, был ученый 18-19 веков Пьер Симон Лаплас (1749 – 1827), знаменитый тем, что создал теорию образования планет Солнечной системы из разряженной материи (облака). О невидимых звездах Лаплас впервые написал в 1795 году. Руководствуясь законом всемирного тяготения, он пришел к выводу, что звезда с плотностью, равной плотности Земли и диаметром в 250 раз больше диаметра Солнца, не дает ни одному световому лучу достичь нас из-за своего тяготения; поэтому возможно, что самые яркие небесные тела во Вселенной оказываются по этой причине невидимыми.



Посмотрите также изображения черных дыр (период - февраль2004*февраль2005) с сервера наших коллег Вселенная сегодня

В наше время доказать это может любой школьник, знающий основы физики. Действительно, чем больше космическое тело, тем большую скорость нужно набрать, чтобы навсегда покинуть его. Эта скорость называется второй космической, и для Земли равна 11 км/сек. Но вторая космическая скорость тем больше, чем больше масса и чем меньше радиус небесного тела, т.к. с увеличением массы тяготение увеличивается, а с ростом расстояния от центра оно ослабевает. На Солнце 2-я космическая скорость равна 620 км/сек, но на его поверхности. Если же представить, что Солнце сжали до радиуса 10 километров, оставив при этом массу прежней, то 2-я космическая скорость увеличится до половины скорости света или 150 тысяч километров в секунду! Значит, если радиус Солнца уменьшать еще дальше (оставляя массу неизменной), то наступит такой момент, когда вторая космическая скорость достигнет световой или 300 000 км/сек! Лаплас, конечно, не брал в расчет сжатие небесных тел, что играет самую важную роль в образовании черных дыр, но он позволил понять главное: небесное тело, на поверхности которого вторая космическая скорость превышает скорость света, становится невидимой для внешнего наблюдателя! Иначе, свет пытается вырваться в пространство, но гравитация не позволяет ему этого сделать, и со стороны мы можем видеть лишь черное пятно в космосе, проще говоря, некую дыру! Подобные выводы были сделаны современником Лапласа английским геологом Дж. Мичеллом в 1783 году, но его труды менее известны.

Итак, мы убедились, что могут существовать невидимые небесные тела, которые в реальности существуют, но не могут быть наблюдаемы с Земли в виду отсутствия излучения от них. Все это казалось убедительным до того, как научный мир не познакомился в начале 20 века с теорией еще одного великого физика – Альберта Эйнштейна. Но убедительность Лапласа и Митчела все же была шаткой по той простой причине, что в их времена еще не знали, что скорости выше скорости света в природе просто не существует. Общая теория относительности позволила сделать большой шаг к определению черной дыры в современном ее понимании. Чтобы понять суть различия между тяготением по Ньютону и тяготением по Эйнштейну, вернемся к опыту со сжатием Солнца. Закон Ньютона гласит, что при сжатии вдвое гравитация возрастает вчетверо, но Эйнштейну удалось блестяще доказать, что гравитация будет расти быстрее, и чем дальше мы сжимаем тело, тем быстрее будет расти гравитация. Если следовать ньютоновскому тяготению, то гравитация станет бесконечно большой, если радиус станет равным 0. Эйнштейн же нашел, что тяготение становится бесконечным при так называемом гравитационном радиусе небесного тела. Сфера описываемся таким радиусом, называется также сферой Шварцшильда. Иначе, тело не сожмется в точку, оно будет иметь определенные размеры, но гравитацию, стремящуюся к бесконечности. Гравитационный радиус напрямую зависит от массы небесного тела. Например, гравитационный радиус Земли равен 10мм (при настоящем – 6400км), а для Солнца 3000м (700000 км). Итак, теория гласит о том, что любое небесное тело (звезда, планета) сжавшееся до гравитационного радиуса, перестает быть источником излучения, т.к. свет или любое другое излучение не может покинуть данное тело по причине того, что 2-я космическая скорость от гравитационного радиуса и меньше будет выше скорости света. Остается один вопрос: что и каким образом может сжать звезду до гравитационного радиуса. Ответ: сама звезда! Пока звезда «живет» внутри ее происходят термоядерные реакции создающие потоки излучения к поверхности газового шара. Но вещество (водород) для реакций ограничено, и за время от нескольких десятков миллионов до миллиардов лет иссякает.

После того, как водородное топливо будет израсходовано, внутреннее давление создаваемое ранее реакциями исчезнет, и звезда начнет сжиматься под действием собственной гравитации примерно так, как мы сжимает руками большой кусок ваты. Некоторые звезды сжимаются очень быстро – катастрофически. Происходит так называемый гравитационный коллапс. Разрешив вопрос о сжатии звезд, мы подошли к самому главному – вопросу существования черных дыр. Мы выяснили, что теоретически такие объекты могут существовать, но как найти их практически? Ведь, по словам знаменитого философа Конфуция, приходится искать черную кошку в темной комнате, и неизвестно есть ли она там вообще. Поиск таинственных объектов начинался с рентгеновских источников излучения, т.е. тех, которые излучают всем известные лучи Рентгена, широко использующиеся в медицине для съемки костей и внутренних органов человека. У рентгеновских источников есть замечательное свойство: они излучают только при нагревании окружающего газа до сверх высоких температур. Но чтобы нагреть газ до такой температуры, нужно чтобы поле тяготения было очень сильным. Такими полями обладают сжавшиеся звезды (белые карлики, нейтронные звезды и…. черные дыры!). Но если белые карлики можно наблюдать непосредственно, то как вычислить черную дыру? Астрономы разрешили и эту задачу. Выяснилось, что если сжавшаяся звезда имеет массу в два раза превышающую массу Солнца, то самый вероятный кандидат в черные дыры. Измерить же массу небесного тела легче всего если он существует в паре с другим, проще говоря, в двойной системе по его орбитальному движению. Поиск подобных двойных систем, которые к тому же излучают в рентгене увенчался успехом. Астрономы нашли такую систему в созвездии Лебедя, выяснив что, по крайней мере, один из компонентов обладает массой, превышающей критическую, т.е. более двух солнечных масс. Созвездие Лебедя лучше всего наблюдать летом и осенью, когда оно видно прямо над головой. Объект был назван Лебедь Х-1, и является первым объектом – кандидатом в черные дыры. Он расположен на расстоянии 6000 световых лет от Земли и состоит из двух тел: нормальной звезды-гиганта массой около 20 солнц и невидимый объект массой 10 солнц, излучающий в рентгеновском диапазоне. Но позвольте, скажете вы, как же может излучать черная дыра, если мы только что говорили, что ничто не может покинуть ее! Да, это верно, но дело в том, что излучает не сама черная дыра, а лишь вещество, падающее на черную дыру. Именно по излучению падающего вещества мы можем оценивать присутствие черной дыры.

Обладая мощным тяготением, черная дыра забирает у своего компаньона часть вещества, как бы высасывает материю, которая по спирали устремляется к черной дыре. Чем ближе вытягиваемое вещество к черной дыре, тем сильнее оно разогревается и, наконец, начинает излучать в рентгеновском диапазоне, что и фиксируют земные приемники излучения. При достижении окрестностей гравитационного радиуса (откуда еще может вырваться излучение) газ разогревается до 10 миллионов градусов, а рентгеновская светимость этого газа в тысячи раз превосходит светимость Солнца во всех диапазонах! Вспышки излучения видны не менее, чем в 200 километрах от центра черной дыры, а ее действительные размеры составляют около 30 километров. Итак, черные дыры существуют, и в действительности представляют из себя чрезвычайно сжатую область пространства-времени (для простоты – сверхплотный шар), которую не способно покинуть никакое излучение. Следует отметить, что благодаря необычности черных дыр средства массовой информации спекулируют на их свойстве поглощать окружающее вещество. Пройдя около Земли, черная дыра вполне может своим тяготением изменить форму Земли и начать затягивать ее вещество внутрь себя. Но подобное событие крайне маловероятно, тем более, как было сказано, ближайшие из них находятся на расстоянии в несколько тысяч световых лет. Поэтому даже если допустить, что черная дыра вдруг направится к Земле, то достичь она сможет ее только через несколько тысяч лет, и это при том, что двигаться она будет со скоростью света. При этом должно соблюдаться условие точной направленности к Земле, что на таком расстоянии теряет всякий смысл. Поэтому с полной уверенностью можно сказать, что гибель от черной дыры человечеству не грозит…. Ведя рассказ о черных дырах, мы всегда говорили о внешнем наблюдателе, т.е. пытались обнаружить черную дыру извне.

А что произойдет с наблюдателем, если он вдруг окажется по ту сторону гравитационного радиуса, иначе именуемого горизонтом событий. Здесь начинается самое удивительное свойство черных дыр. Не зря, говоря о черных дырах, мы всегда упоминали время, точнее пространство-время. По теории относительности Эйнштейна, чем быстрее движется тело, тем больше становится его масса, но тем медленнее начинает идти время! На малых скоростях в нормальных условиях этот эффект незаметен, но если тело (космический корабль) движется со скоростью близкой к скорости света, то масса его увеличивается, а время замедляется! При скорости тела равной скорости света, масса обращается в бесконечность, а время останавливается! Об этом говорят строгие математические формулы. Вернемся к черной дыре. Представим себе фантастическую ситуацию, когда звездолет с космонавтами на борту приближается к гравитационному радиусу или горизонту событий. Понятно, что горизонт событий назван так потому, что мы может наблюдать какие-либо события (вообще что-то наблюдать) только до этой границы. Что за этой границей мы наблюдать не в состоянии. Тем не менее, находясь внутри корабля, приближающегося к черной дыре, космонавты будут чувствовать себя, как и раньше, т.к. по их часам время будет идти «нормально». Космический корабль спокойно пересечет горизонт событий, и будет двигаться дальше. Но поскольку скорость его будет близка к скорости света, то до центра черной дыры космический корабль достигнет, буквально, за миг.

А для внешнего наблюдателя космический корабль просто остановится на горизонте событий, и будет находиться там практически вечно! Таков парадокс колоссального тяготения черных дыр. Закономерен вопрос, а останутся ли живы космонавты, уходящие в бесконечность по часам внешнего наблюдателя. Нет. И дело вовсе не в громадном тяготении, а в приливных силах, которые у столь малого и массивного тела сильно меняются на малых расстояниях. При росте космонавта 1 м 70 см приливные силы у его головы будут гораздо меньше, чем у ног и его просто разорвет уже на горизонте событий. Итак, мы в общих чертах выяснили, что такое черные дыры, но речь пока шла о черных дырах звездной массы. В настоящее время астрономам удалось обнаружить сверхмассивные черные дыры, масса которых может составлять миллиард солнц! Сверхмассивные черные дыры по свойствам не отличаются от своих меньших собратьев. Они лишь гораздо массивнее и, как правило, находятся в центрах галактик – звездных островов Вселенной. В центре Нашей Галактики (Млечный Путь) тоже имеется сверхмассивная черная дыра. Колоссальная масса таких черных дыр позволят вести их поиск не только в Нашей Галактике, но и в центрах далеких галактик, находящихся на расстоянии миллионы и миллиарды световых лет от Земли и Солнца. Европейские и американские ученые провели глобальный поиск сверхмассивных черных дыр, которые, согласно современным теоретическим выкладкам, должны находиться в центре каждой галактики.

Современные технологии позволяют выявить наличие этих коллапсаров в соседних галактиках, но обнаружить их удалось совсем немного. Значит, либо черные дыры просто скрываются в плотных газопылевых облаках в центральной части галактик, либо они находятся в более отдаленных уголках Вселенной. Итак, черные дыры можно обнаружить по рентгеновскому излучению, испускаемому во время аккреции вещества на них, и чтобы произвести перепись подобных источников, в околоземное комическое пространство были запущены спутники с рентгеновскими телескопами на борту. Занимаясь поиском источников Х-лучей, космические обсерватории «Чандра» (Chandra) и «Росси» (Rossi) обнаружили, что небо заполнено фоновым рентгеновским излучением, и является в миллионы раз более ярким, чем в видимых лучах. Значительная часть этого фонового рентгеновского излучения неба должна исходить от черных дыр. Обычно в астрономии говорят о трех типах черных дыр. Первый - черные дыры звездных масс (примерно 10 масс Солнца). Они образуются из массивных звезд, когда в тех заканчивается термоядерное горючее. Второй - сверхмассивные черные дыры в центрах галактик (массы от миллиона до миллиардов солнечных). И наконец, первичные черные дыры, образовавшиеся в начале жизни Вселенной, массы которых невелики (порядка массы крупного астероида). Таким образом, большой диапазон возможных масс черных дыр остается незаполненным. Но где эти дыры? Заполняя пространство рентгеновскими лучами, они, тем не менее, не желают показывать свое истинное «лицо». Но чтобы построить четкую теорию связи фонового рентгеновского излучения с черными дырами, необходимо знать их количество. На данный момент космическим телескопам удалось обнаружить лишь небольшое количество сверхмассивных черных дыр, существование которых можно считать доказанным. Косвенные признаки позволяют довести количество наблюдаемых черных дыр, ответственных за фоновое излучение, до 15%. Приходится предполагать, что остальные сверхмассивные черные дыры просто прячутся за толстым слоем пылевых облаков, которые пропускают только рентгеновские лучи высокой энергии или же находятся слишком далеко для обнаружения современными средствами наблюдений.


Сверхмассивная черная дыра (окрестности) в центре галактики M87 (рентгеновское изображение). Виден выброс (джет) от горизонта событий. Изображение с сайта www.college.ru/astronomy

Поиск скрытых черных дыр - одна из главных задач современной рентгеновской астрономии. Последние прорывы в этой области, связанные с исследованиями при помощи телескопов «Чандра» и «Росси», тем не менее охватывают лишь низкоэнергетический диапазон рентгеновского излучения - приблизительно 2000–20 000 электрон-вольт (для сравнения, энергия оптического излучения - около 2 электрон-вольт). Существенные поправки в эти исследования может внести европейский космический телескоп «Интеграл» (Integral), который способен проникнуть в еще недостаточно изученную область рентгеновского излучения с энергией 20 000–300 000 электрон-вольт. Важность изучения этого типа рентгеновских лучей состоит в том, что хотя рентгеновский фон неба имеет низкую энергетику, но на этом фоне проявляются множественные пики (точки) излучения с энергией около 30 000 электрон-вольт. Ученые еще только приоткрывают завесу тайны того, что порождает эти пики, а «Интеграл» - первый достаточно чувствительный телескоп, способный найти подобные источники рентгеновских лучей. По предположению астрономов, лучи высокой энергии порождают так называемые Комптон-объекты (Compton-thick), то есть сверхмассивные черные дыры, окутанные пылевой оболочкой. Именно Комптон-объекты ответственны за пики рентгеновского излучения в 30 000 электрон-вольт на поле фонового излучения.

Но, продолжая исследования, ученые пришли к выводу, что Комптон-объекты составляют лишь 10% от того числа черных дыр, которые должны создавать пики высоких энергий. Это - серьезное препятствие для дальнейшего развития теории. Значит, недостающие рентгеновские лучи поставляют не Compton-thick, а обычные сверхмассивные черные дыры? Тогда как быть с пылевыми завесами для рентгеновских лучей низкой энергии.? Ответ, похоже, кроется в том, что многие черные дыры (Комптон-объекты) имели достаточно времени, чтобы поглотить весь газ и пыль, которые окутывали их, но до этого имели возможность заявить о себе рентгеновским излучением высокой энергии. После поглощения всего вещества такие черные дыры уже оказались неспособными генерировать рентгеновское излучение на горизонте событий. Становится понятно, почему эти черные дыры нельзя обнаружить, и появляется возможность отнести недостающие источники фонового излучения на их счет, так как хотя черная дыра уже не излучает, но ранее созданное ей излучение продолжает путешествие по Вселенной. Тем не менее, вполне возможно, что недостающие черные дыры более скрыты, чем предполагают астрономы, то есть то, что мы не их видим, вовсе не значит, что их нет. Просто пока у нас не хватает мощности средств наблюдений, чтобы увидеть их. Тем временем ученые из NASA планируют расширить диапазон поиска скрытых черных дыр еще дальше во Вселенную. Именно там находится подводная часть айсберга, считают они. В течение нескольких месяцев исследования будут проводиться в рамках миссии «Свифт» (Swift). Проникновение в глубокую Вселенную позволит обнаружить прячущиеся черные дыры, найти недостающее звено для фонового излучения и пролить свет на их активность в раннюю эпоху Вселенной.

ДОПОЛНЕНИЕ

Начат учет черных дыр

Небо в гамма-лучах (точками показаны источники гамма-излучения). Изображение с сайта http://www.esa.int/

Самые большие из черных дыр - супермассивные, которые в миллионы и миллиарды раз превышают массу Солнца, а каждая из них находится в центре большинства галактик. Эти гравитационные монстры обладают огромным «аппетитом». Все больше увеличивая свою массу, они уже поглотили окружающее их вещество на «сумму» в миллионы Солнц, но еще не насытились, продолжая свое формирование дальше. В постоянное меню черной дыры входят: газ, пыль, планеты и звезды, но иногда приверженцы коллапса позволяют себе полакомиться и «деликатесами». На «десерт» черные дыры предпочитают компактные массивные объекты, например, черные дыры звездной массы, нейтронные звезды и белые карлики, ненароком попавшие в поле тяготения сверхмассивного объекта. Именно эти объекты издают самые «громкие крики» во Вселенную в рентгеновском и гамма диапазоне, когда черная дыра «лакомится» ими. Казалось бы, достаточно вывести на орбиту космический телескоп с детекторами гамма-лучей и начать успешные поиски гамма-всплесков от черных дыр, переписав таким образом все подобные объекты. Для этих целей в конце 2002 года на орбиту был выведен спутник «Интеграл» (Integral) космического агентства ESA, способный просматривать небо в гамма-диапазоне. Но и здесь Вселенная заставляет ученых пробираться сквозь тернии.

Поскольку все небо заполнено фоновым гамма-излучением, это мешает находить слабые гамма-всплески от очень далеких источников, занижая, таким образом, действительное количество черных дыр, что сказывается на правильности космологических теорий. Чтобы обойти это препятствие, международная группа, включающая российских ученых Евгения Чуразова и Рашида Сюняева из Института космических исследований, предложила откалибровать приборы «Интеграла» с учетом уровня фонового гамма-излучения. Для этого они решили направить приемники излучения «Интеграла» в сторону Земли, которая «своим телом» закрыла бы общий фон неба. Данное мероприятие было весьма рискованным по причине яркости Земли для устройств «Интрегала», работающих в оптическом диапазоне. Оптика космический обсерватории могла «ослепнуть», т.к. настроена на далекий космос, который на несколько порядков слабее, чем близкая планета. Но ученые провели эксперимент без «потерь», и риск был оправдан. Используя естественный щит от излучений, астрономы замерили уровень приходящего излучения и сравнили полученные записи наблюдений с более ранними. Это позволило найти «нулевую» точку излучений, от которой теперь будет вестись отсчет при анализе новых полученных данных. Таким образом, исключая общий гамма-фон, исследователи смогут более точно выявлять местонахождение черных дыр, уточняя их количество и распределение в пространстве. До запуска «Интеграла» в гамма-диапазоне удалось пронаблюдать всего несколько десятков объектов. К настоящему времени, при помощи этого космического телескопа удалось найти 300 отдельных источников в нашей Галактике и около 100 самых «ярких» черных дыр в других галактиках. Но это только вершина айсберга. Астрономы уверены, что существуют десятки миллионов черных дыр, излучение от которых сливается с фоновым. Все их должен будет обнаружить «Интерграл», что позволит навести идеальный порядок в космологических теориях.

Интересные факты из жизни черных дыр

Поглощение звезды черной дырой в представлении художника. Изображение: NASA/JPL

Некоторые черные дыры считаются более активными, чем их спокойные соседи. Активные черные дыры поглощают окружающее вещество, а если в полет тяготения попадет «зазевавшаяся» звезда, пролетающая мимо, то она непременно будет «съедена» самым варварским способом (разорванная в клочья). Поглощаемое вещество, падая на черную дыру, нагревается до огромных температур, и испытывает вспышку в гамма, рентгеновском и ультрафиолетовом диапазоне. В центре Млечного Пути так же находится сверхмассивная черная дыра, но ее труднее изучать, чем дыры в соседних или даже далеких галактиках. Это связано с плотной стеной газа и пыли, встающей на пути центру Нашей Галактики, ведь Солнечная система находится почти на краю галактического диска. Поэтому наблюдения активности черных дыр гораздо эффективней у тех галактик, ядро которых хорошо просматривается. При наблюдении одной из далеких галактик, расположенной в созвездии Волопаса на расстоянии 4-х миллиардов световых лет, астрономам впервые удалось отследить от начала и почти до конца процесс поглощения звезды супермассивной черной дырой. В течение тысяч лет этот гигантский коллапсар тихо-мирно покоился в центре безымянной эллиптической галактики, пока одна из звезд не осмелилась приблизиться к ней достаточно близко.

Мощная гравитация черной дыры разорвала звезду на части. Сгустки вещества начали падать на черную дыру и при достижении горизонта событий, ярко вспыхивать в ультрафиолетовом диапазоне. Эти вспышки и зафиксировал новый космический телескоп NASA Galaxy Evolution Explorer, изучающий небо в ультрафиолете. Телескоп и сегодня продолжает наблюдать за поведением отличившегося объекта, т.к. трапеза черной дыры еще не закончилась, а остатки звезды продолжают падать в бездну времени и пространства. Наблюдения таких процессов, в конце концов, помогут лучше понять, как черные дыры развиваются вместе с их родительскими галактиками (или, наоборот, галактики развиваются с родительской черной дырой). Более ранние наблюдения показывают, что подобные эксцессы не редкость во Вселенной. Ученые подсчитали, что в среднем звезда поглощается сверхмассивной черной дырой типичной галактики один раз в 10000 лет, но поскольку галактик большое количество, то наблюдать поглощения звезд можно гораздо чаще.

Мультимедийный видеоролик по теме . Черные дыры, джеты и квазары, movie file (mov, 8,3Mb, 71 сек) Черные дыры так плотны и тяжелы, что ничто - даже свет, не может уйти от нее. Эти объекты очень загадочны. Черные дыры могут поглощать окружающий газ и звезды. Они находятся в центрах галактик и квазаров и могут создавать мощные джеты высокой энергии из закрученных в спираль дисков, которые их окружают. Это видео показывает некоторые наблюдения черных дыр, джетов и квазаров. Схематическое изображение черной дыры (35,2Kb, фото)


Таинственные и неуловимые черные дыры. Законы физики подтверждают возможность их существования во вселенной, но сих пор остается множество вопросов. Многочисленные наблюдения показывают, что дыры существуют во вселенной и этих объектов - больше миллиона.

Что такое черные дыры?

Ещё в 1915 году при решении уравнений Эйнштейна было предсказано такое явление как «черные дыры». Однако научное сообщество заинтересовалось ими только в 1967 году. Их тогда называли «сколлапсировавшие звёзды», «застывшие звёзды».

Сейчас черной дырой называют область времени и пространства, которые обладают такой гравитацией, что из неё не может выбраться даже луч света.

Как образуются черные дыры?

Существуют несколько теорий появления черных дыр, которые делятся на гипотетические и реалистичные. Самая простая и распространенная реалистичная - теория гравитационного каллапса больших звезды.

Когда достаточно массивная звезда перед «смертью» разрастается в размерах и становится не стабильной, расходуя последнее топливо. В то же время масса звезды остается неизменной, но её размеры уменьшаются так как происходит, так называемое, уплотнение. Иными словами при уплотнении тяжелое ядро "падает" в само себя. Параллельно с этим уплотнение приводит к резкому повышению температуры внутри звезды и внешние слои небесного тела отрываются, из них образуются новые звезды. В это же время в центре звезды - ядро падает в свой собственный "центр". В результате действия сил гравитации центр обваливается в точку - т.е силы гравитации на столько сильны, что поглощают уплотненное ядро. Так рождается черная дыра, которая начинает искажать пространство и время, что даже свет не может вырваться из неё.

В центрах всех галактик находится сверхмассивная черная дыра. Согласно теории относительности Эйнштейна:

«Любая масса искажает пространство и время».

А теперь представьте, как сильно черная дыра искажает время и пространство, ведь её масса огромна и одновременно втиснута в сверхмалый объем. Из-за этой способности возникает следующая странность:

«Черные дыры обладают способностью практически останавливать время и сжимать пространство. Из-за этого сильнейшего искажения дыры становятся не видимыми для нас».

Если черные дыры не видны, откуда мы знаем, что они существуют?

Да, хоть черная дыра и невидимка, но она должна быть заметна за счет материи, которая падает в неё. А так же звездный газ, который притягивается черной дырой, при приближении к горизонту событий температура газа начинает расти до сверхвысоких значений, что приводит к свечению. Именно поэтому черные дыры светятся. Благодаря такому, хоть и слабому свечению, астрономы и астрофизики объясняют наличие в центре галактики объекта с малым объемом, но огромной массой. В данный момент в результате наблюдений обнаружено порядка 1000 объектов, которые похожи по поведению на черные дыры.

Черные дыры и галактики

Как черные дыры могут влиять на галактики? Этот вопрос мучает ученых всего мира. Есть гипотеза, согласно которой именно черные дыры, находящиеся в центре галактики влияет на её формы и эволюцию. И что при столкновении двух галактик происходит слияние черных дыр и во время этого процесса выбрасывается такое огромное количество энергии и материи, что образуются новые звезды.

Типы черных дыр

  • Согласно существующей теории, есть три типа черных дыр: звездные, сверхмассивные, миниатюрные. И каждая из них сформировалась особым образом.
  • - Черные дыры звездных масс, она разрастается до огромных размеров и разрушается.
    - Сверхмассивные черные дыры, которые могут иметь массу, эквивалентную миллионам Солнц, с большой вероятностью существуют в центрах практически всех галактик, включая наш Млечный путь. Ученые все ещё имеют разные гипотизы образования сверхмассивных черных дыр. Пока известно только одно - сверхмассивные черные дыры - побочный продукт образования галактик. Сверхмассивные черные дыры - они отличаются от обычных тем, что имеют очень большой размер, но парадоксально маленькую плотность.
  • - Еще никто не смог обнаружить миниатюрную черную дыру, которая имела бы массу меньшую, чем Солнце. Вполне возможно, что миниатюрные дыры могли бы образоваться вскоре после «Большого взрыва», который является начальной точной существования нашей вселенной (около 13,7 млрд лет назад).
  • - Совсем недавно было введено новое понятие как "белые черные дыры". Это пока гипотетическая черня дыра, которая является противоположностью черной дыре. Активно изучал возможность существования белых дыр Стивен Хокинг.
  • - Квантовые черные дыры - они существуют пока только в теории. Квантовые черные дыры могут образовываться при столкновении сверхмалых частиц в результате ядерной реакции.
  • - Первичные черные дыры - тоже теория. Они образовались сразу после возникновения.

В данный момент существует большое количество открытых вопросов, на которые ещё предстоит ответить будущим поколениям. Например, могут ли в действительности существовать так называемые "кротовые норы", с помощью которых можно путешествовать по пространству и времени. Что именно происходит внутри черной дыры и каким законам подчиняются эти явления. И как быть с исчезновением информации в черной дыре?

Чёрная дыра в физике определяется как область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть ее не могут даже объекты, движущиеся со скоростью света, в том числе и кванты самого света. Граница этой области называется горизонтом событий, а её характерный размер – гравитационным радиусом, который назван радиусом Шварцвальда. Чёрные дыры – это самые загадочные объекты во Вселенной. Своим неудачным названием они обязаны американскому астрофизику Джону Уиллеру. Это он в популярной лекции «Наша Вселенная: известное и неизвестное» в 1967 г. назвал эти сверхплотные тела дырами. Ранее подобные объекты называли «сколлапсировавшие звёзды» или «коллапсары». Но термин «чёрная дыра» прижился, и менять его уже стало просто невозможно. Во Вселенной существует два типа черных дыр: 1 – сверхмассивные черные дыры, масса которых в миллионы раз больше массы Солнца (считается, что такие объекты находятся в центрах галактик); 2 – менее массивные черные дыры, которые возникают в результате сжатия гигантских умирающих звезд, масса их больше трех масс Солнца; при сжатии звезды вещество все сильнее уплотняется и в результате гравитация объекта усиливается до такой степени, что свет не может преодолеть ее. Чёрную дыру не может покинуть ни излучение, ни вещество. Чёрные дыры – это сверхмощные гравитаторы.

Радиус, до которого должна сжаться звезда, чтобы превратиться в чёрную дыру, называется гравитационным радиусом. Для чёрных дыр, образовавшихся из звезд, он составляет всего лишь несколько десятков километров. В некоторых парах двойных звезд одна из них невидима в самый мощный телескоп, но масса невидимого компонента в такой гравитационной системе оказывается чрезвычайно большой. Скорее всего, такие объекты являются или нейтронными звездами, или чёрными дырами. Иногда невидимые компоненты в таких парах срывают вещество с нормальной звезды. В этом случае газ отделяется от внешних слоев видимой звезды и падает неведомо куда – на невидимую чёрную дыру. Но прежде чем упасть на дыру, газ излучает электромагнитные волны самой разной длины, в том числе и очень короткие рентгеновские волны. Более того, вблизи нейтронной звезды или чёрной дыры газ сильно разогревается и становится источником мощного высокоэнергичного электромагнитного излучения в рентгеновском и гамма-диапазонах. Такое излучение не проходит сквозь земную атмосферу, но его можно наблюдать с помощью космических телескопов. Одним из вероятных кандидатов в чёрные дыры считается мощный источник рентгеновских лучей в созвездии Лебедя.

«Научная фантастика может быть полезной - она стимулирует воображение и избавляет от страха перед будущим. Однако научные факты могут оказаться намного поразительнее. Научная фантастика даже не предполагала наличия таких вещей, как черные дыры »
Стивен Хокинг

В глубинах вселенной для человека таится бесчисленное множество загадок и тайн. Одной из них являются черные дыры – объекты, которые не могут понять даже величайшие умы человечества. Сотни астрофизиков пытаются раскрыть природу черных дыр, однако на данном этапе мы еще даже не доказали их существование на практике.

Кинорежиссеры посвящают им свои фильмы, а среди простых людей черные дыры стали настолько культовым явлением, что их отождествляют с концом света и неминуемой гибелью. Их боятся и ненавидят, но при этом боготворят их и преклоняются перед неизвестностью, которую таят в себе эти странные осколки Вселенной. Согласитесь, быть поглощенным черной дырой – та еще романтика. С их помощью можно , а также они могут стать для нас проводниками в .

На популярности черных дыр часто спекулирует желтая пресса. Найти заголовки в газетах, связанные с концом света на планете из-за очередного столкновения со сверхмассивной черной дырой, не проблема. Гораздо хуже то, что малограмотная часть населения все воспринимает это всерьез и поднимает настоящую панику. Чтобы внести толику ясности, мы отправимся в путешествие к истокам открытия черных дыр и попытаемся понять, что же это такое и как к этому относиться.

Невидимые звезды

Так уж сложилось, что современные физики описывают устройство нашей Вселенной с помощью теории относительности, которую человечеству в начале 20 века заботливо предоставил Эйнштейн. Тем более загадочными становятся черные дыры, на горизонте событий которых прекращают действовать все известные нам законы физики и эйнштейновская теория в том числе. Это ли не прекрасно? К тому же, догадку о существовании черных дыр высказали задолго до рождения самого Эйнштейна.

В 1783 году в Англии наблюдался значительный рост научной активности. В те времена наука шла бок о бок с религией, они неплохо уживались вместе, а ученых уже не считали еретиками. Более того, научными изысканиями занимались священники. Одним из таких служителей Бога был английский пастор Джон Мичелл, который задавался не только вопросами бытия, но и вполне научными задачами. Мичелл был весьма титулованным ученым: изначально он был преподавателем математики и древнего языкознания в одном из колледжей, а после этого за ряд открытий был принят в Лондонское королевское общество.

Джон Мичелл занимался вопросами сейсмологии, но на досуге любил поразмыслить о вечном и космосе. Так у него родилась идея о том, что где-то в глубинах Вселенной могут существовать сверхмассивные тела с такой мощной гравитацией, что для преодоления силы тяготения такого тела необходимо двигаться со скоростью равной или выше скорости света. Если принять такую теорию за истину, то развить вторую космическую скорость (скорость, необходимая для преодоления гравитационного притяжения покидаемого тела) не сможет даже свет, поэтому такое тело останется невидимым для невооруженного глаза.

Свою новую теорию Мичелл обозвал «темными звездами», а заодно попытался вычислить массу таких объектов. Свои мысли по этому поводу он высказал в открытом письме Лондонскому королевскому обществу. К сожалению, в те времена такие изыскания не представляли особой ценности для науки, поэтому письмо Мичелла отправили в архив. Лишь спустя две сотни лет во второй половине 20 века удалось обнаружить его среди тысяч других записей, бережно хранящихся в древней библиотеке.

Первые научные обоснования существования черных дыр

После выхода Общей теории относительности Эйнштейна в свет, математики и физики всерьез взялись за решение представленных немецким ученым уравнений, которые должны были рассказать нам много нового об устройстве Вселенной. Тем же решил заняться и немецкий астроном, физик Карл Шварцшильд в 1916 году.

Ученый с помощью своих вычислений пришел к выводу, что существование черных дыр возможно. Также он первым описал то, что впоследствии назвали романтической фразой «горизонт событий» — воображаемую границу пространства-времени у черной дыры, после пересечения которой наступает точка невозврата. Из-за горизонта событий не вырвется ничто, даже свет. Именно за горизонтом событий наступает так называемая «сингулярность», где известные нам законы физики перестают действовать.

Продолжая развивать свою теорию и решая уравнения, Шварцшильд открывал для себя и мира новые тайны черных дыр. Так, он смог исключительно на бумаге вычислить расстояние от центра черной дыры, где сконцентрирована ее масса, до горизонта событий. Данное расстояние Шварцшильд назвал гравитационным радиусом.

Несмотря на то, что математически решения Шварцшильда были исключительно верны и не могли быть опровергнуты, научное сообщество начала 20 века не могло сразу принять столь шокирующее открытие, и существование черных дыр было списано на уровень фантастики, которая то и дело проявлялась в теории относительности. На ближайшие полтора десятка лет исследование космоса на предмет наличия черных дыр было медленным, и занимались им единичные приверженцы теории немецкого физика.

Звезды, рождающие тьму

После того, как уравнения Эйнштейна были разобраны по полочкам, настало время с помощью сделанных выводов разбираться в устройстве Вселенной. В частности, в теории эволюции звезд. Ни для кого не секрет, что в нашем мире ничто не вечно. Даже звезды имеют свой цикл жизни, пусть и более долгий, нежели человек.

Одним из первых ученых, которые всерьез заинтересовались звездной эволюцией, стал молодой астрофизик Субраманьян Чандрасекар – уроженец Индии. В 1930 году он выпустил научную работу, в которой описывалось предполагаемое внутреннее строение звезд, а также циклы их жизни.

Уже в начале 20 века ученые догадывались о таком явлении, как гравитационное сжатие (гравитационный коллапс). В определенный момент своей жизни звезда начинает сжиматься с огромной скоростью под действием гравитационных сил. Как правило, это происходит в момент смерти звезды, однако при гравитационном коллапсе есть несколько путей дальнейшего существования раскаленного шара.

Научный руководитель Чандрасекара Ральф Фаулер – уважаемый в свое время физик-теоретик – предполагал, что во время гравитационного коллапса любая звезда превращается в более мелкую и горячую – белого карлика. Но вышло так, что ученик «сломал» теорию учителя, которую разделяло большинство физиков начала прошлого века. Согласно работе молодого индуса, кончина звезды зависит от ее изначальной массы. Например, белыми карликами могут становиться только те звезды, чья масса не превышала 1.44 от массы Солнца. Это число было названо пределом Чандрасекара. Если же масса звезды превышала этот предел, то она умирает совсем иначе. При определенных условиях, такая звезда в момент смерти может возродиться в новую, нейтронную звезду – еще одну загадку современной Вселенной. Теория относительности же подсказывает нам еще один вариант – сжатие звезды до сверхмалых величин, и вот здесь начинается самое интересное.

В 1932 году в одном из научных журналов появляется статья, в которой гениальный физик из СССР Лев Ландау предположил, что при коллапсе сверхмассивная звезда сжимается в точку с бесконечно малым радиусом и бесконечной массой. Несмотря на то, что такое событие весьма сложно представить с точки зрения неподготовленного человека, Ландау был недалек от истины. Также физик предположил, что согласно теории относительности, гравитация в такой точке будет столь велика, что начнет искажать пространство-время.

Теория Ландау понравилась астрофизикам, и они продолжили ее развивать. В 1939 году в Америке благодаря усилиям двух физиков – Роберта Оппенгеймера и Хартленда Снейдера – появилась теория, подробно описывающая сверхмассивную звезду на момент коллапса. В результате такого события должна была появиться настоящая черная дыра. Несмотря на убедительность доводов, ученые продолжали отрицать возможность существования подобных тел, как и превращение в них звезд. Даже Эйнштейн отстранился от этой идеи, посчитав, что звезда не способна на такие феноменальные превращения. Другие же физики не скупились в высказываниях, называя возможность таких событий нелепыми.
Впрочем, наука всегда достигает истины, стоит лишь немного подождать. Так и получилось.

Самые яркие объекты во Вселенной

Наш мир – совокупность парадоксов. Иногда в нем уживаются вещи, сосуществование которых не поддается никакой логике. Например, термин «черная дыра» не будет ассоциироваться у нормального человека с выражением «невероятно яркий», однако открытие начала 60-х годов прошлого века позволило ученым считать это утверждение неверным.

С помощью телескопов астрофизикам удалось обнаружить неизвестные до того момента объекты на звездном небе, которые вели себя совсем странно несмотря на то, что выглядели, как обычные звезды. Изучая эти странные светила, американский ученый Мартин Шмидт обратил внимание на их спектрографию, данные которой показывали отличные от сканирования других звезд результаты. Проще говоря, эти звезды не были похожи на другие, привычные нам.

Внезапно Шмидта осенило, и он обратил внимание на смещение спектра в красном диапазоне. Оказалось, что эти объекты намного дальше от нас, чем те звезды, что мы привыкли наблюдать в небе. Например, наблюдаемый Шмидтом объект был расположен в двух с половиной миллиардах световых лет от нашей планеты, но светил так же ярко, как и звезда в каких-нибудь сотне световых лет от нас. Получается, свет от одного такого объекта сопоставим с яркостью целой галактики. Такое открытие стало настоящим прорывом в астрофизике. Ученый назвал эти объекты «quasi-stellar» или просто «квазар».

Мартин Шмидт продолжил изучение новых объектов и выяснил, что столь яркое свечение может быть вызвано только по одной причине – аккреции. Аккреция – это процесс поглощения сверхмассивным телом окружающей материи с помощью гравитации. Ученый пришел к выводу, что в центре квазаров находится огромная черная дыра, которая с невероятной силой втягивает в себя окружающую ее в пространстве материю. В процессе поглощения дырой материи, частицы разгоняются до огромных скоростей и начинают светиться. Своеобразный светящийся купол вокруг черной дыры называется аккреационным диском. Его визуализация была хорошо продемонстрирована в киноленте Кристофера Нолана «Интерстеллар», которая породила множество вопросов «как черная дыра может светиться?».

На сегодняшний день ученые нашли на звездном небе уже тысячи квазаров. Эти странные невероятно яркие объекты называют маяками Вселенной. Они позволяют нам чуть лучше представить устройство космоса и ближе подойти к моменту, с которого все началось.

Несмотря на то, что астрофизики уже много лет получали косвенные доказательства существования сверхмассивных невидимых объектов во Вселенной, термина «черная дыра» не существовало вплоть до 1967 года. Чтобы избежать сложных названий, американский физик Джон Арчибальд Уиллер предложил назвать такие объекты «черными дырами». Почему бы и нет? В какой-то мере они черные, ведь мы их не можем увидеть. К тому же они все притягивают, в них можно упасть, прямо как в настоящую дыру. Да и выбраться из такого места согласно современным законам физики просто невозможно. Впрочем, Стивен Хокинг утверждает, что при путешествии сквозь черную дыру можно попасть в другую Вселенную, другой мир, а это уже надежда.

Страх бесконечности

Из-за излишней таинственности и романтизации черных дыр, эти объекты стали настоящей страшилкой среди людей. Желтая пресса любит спекулировать на неграмотности населения, выдавая в тираж изумительные истории о том, как на нашу Землю движется огромная черная дыра, которая в считанные часы поглотит Солнечную систему, или же просто излучает волны токсичного газа в сторону нашей планеты.

Особенно популярна тема уничтожения планеты с помощью Большого Адронного Коллайдера, который был построен в Европе в 2006 году на территории Европейского совета по ядерным исследованиям (CERN). Волна паники начиналась как чья-то глупая шутка, однако нарастала как снежный ком. Кто-то пустил слух, что в ускорителе частиц коллайдера может образоваться черная дыра, которая поглотит нашу планету целиком. Конечно же, возмущенный народ начал требовать запретить эксперименты в БАК, испугавшись такого исхода событий. В Европейский суд начали поступать иски с требованием закрыть коллайдер, а ученых, создавших его, наказать по всей строгости закона.

На самом деле физики не отрицают, что при столкновении частиц в Большом Адронном Коллайдере могут возникать объекты, похожие по свойствам на черные дыры, однако их размер находится на уровне размеров элементарных частиц, а существуют такие «дыры» столь недолго, что нам даже не удается зафиксировать их возникновение.

Одним из главных специалистов, которые пытаются развеять волну невежества перед людьми, является Стивен Хокинг – знаменитый физик-теоретик, который, к тому же, считается настоящим «гуру» относительно черных дыр. Хокинг доказал, что черные дыры не всегда поглощают свет, который появляется в аккреационных дисках, и его часть рассеивается в пространство. Такое явление было названо излучением Хокинга, или испарением черной дыры. Также Хокинг установил зависимость между размером черной дыры и скоростью ее «испарения» — чем она меньше, тем меньше существует во времени. А это значит, что всем противникам Большого Адронного Коллайдера не стоит переживать: черные дыры в нем не смогут просуществовать и миллионной доли секунды.

Теория, не доказанная практикой

К сожалению, технологии человечества на данном этапе развития не позволяют нам проверить большинство теорий, разработанных астрофизиками и другими учеными. С одной стороны, существование черных дыр довольно убедительно доказано на бумаге и выведено с помощью формул, в которых все сошлось с каждой переменной. С другой, на практике нам пока не удалось увидеть воочию настоящую черную дыру.

Несмотря на все разногласия, физики предполагают, что в центре каждой из галактик находится сверхмассивная черная дыра, которая собирает своей гравитацией звезды в скопления и заставляет путешествовать по Вселенной большой и дружной компанией. В нашей галактике Млечный путь по разным оценкам насчитывается от 200 до 400 миллиардов звезд. Все эти звезды вращаются вокруг чего-то, что обладает огромной массой, вокруг чего-то, что мы не можем увидеть в телескоп. С большой долей вероятности это черная дыра. Стоит ли ее бояться? – Нет, по-крайней мере не в ближайшие несколько миллиардов лет, но мы можем снять про нее еще один интересный фильм.

January 24th, 2013

Из всех гипотетических объектов Вселенной, предсказываемых научными теориями, черные дыры производят самое жуткое впечатление. И, хотя предположения об их существовании начали высказываться почти за полтора столетия до публикации Эйнштейном общей теории относительности, убедительные свидетельства реальности их существования получены совсем недавно.

Давайте начнем с того, как общая теория относительности решает вопрос о природе гравитации. Закон всемирного тяготения Ньютона утверждает, что между двумя любыми массивными телами во Вселенной действует сила взаимного притяжения. По причине такого гравитационного притяжения Земля обращается вокруг Солнца. Общая теория относительности заставляет нас взглянуть на систему Солнце—Земля иначе. Согласно этой теории в присутствии столь массивного небесного тела, как Солнце, пространство-время как бы проминается под его тяжестью, и равномерность его ткани нарушается. Представьте себе эластичный батут, на котором лежит тяжелый шар (например, от боулинга). Натянутая ткань прогибается под его весом, создавая вокруг разрежение. Таким же образом Солнце продавливает пространство-время вокруг себя.



Согласно этой картине Земля просто катается вокруг образовавшейся воронки (за исключением того, что маленький шарик, катающийся вокруг тяжелого на батуте неизбежно будет терять скорость и по спирали приближаться к большому). И то, что мы привычно воспринимаем как силу земного притяжения в нашей повседневной жизни, также есть ни что иное, как изменение геометрии пространства-времени, а не сила в ньютоновском понимании. На сегодня более удачного объяснения природы гравитации, чем дает нам общая теория относительности, не придумано.

А теперь представьте, что произойдет, если мы будем — в рамках предложенной картины — увеличивать и увеличивать массу тяжелого шара, не увеличивая при этом его физических размеров? Будучи абсолютно эластичной, воронка будет углубляться до тех пор, пока ее верхние края не сойдутся где-то высоко над совсем потяжелевшим шаром, и тогда он просто перестанет существовать при взгляде с поверхности. В реальной Вселенной, накопив достаточную массу и плотность материи, объект захлопывает вокруг себя пространственно-временную ловушку, ткань пространства-времени смыкается, и он теряет связь с остальной Вселенной, становясь невидимым для нее. Так возникает черная дыра.

Шварцшильд и его современники полагали, что столь странные космические объекты в природе не существуют. Сам Эйнштейн не только придерживался этой точки зрения, но и ошибочно считал, что ему удалось обосновать свое мнение математически.

В 1930-е годы молодой индийский астрофизик Чандрасекар доказал, что истратившая ядерное топливо звезда сбрасывает оболочку и превращается в медленно остывающий белый карлик лишь в том случае, если ее масса меньше 1,4 масс Солнца. Вскоре американец Фриц Цвикки догадался, что при взрывах сверхновых возникают чрезвычайно плотные тела из нейтронной материи; позднее к этому же выводу пришел и Лев Ландау. После работ Чандрасекара было очевидно, что подобную эволюцию могут претерпеть только звезды с массой больше 1,4 масс Солнца. Поэтому возник естественный вопрос — существует ли верхний предел массы для сверхновых, которые оставляют после себя нейтронные звезды?

В конце 30-х годов будущий отец американской атомной бомбы Роберт Оппенгеймер установил, что такой предел действительно имеется и не превышает нескольких солнечных масс. Дать более точную оценку тогда не было возможности; теперь известно, что массы нейтронных звезд обязаны находиться в интервале 1,5-3 Ms. Но даже из приблизительных вычислений Оппенгеймера и его аспиранта Джорджа Волкова следовало, что самые массивные потомки сверхновых не становятся нейтронными звездами, а переходят в какое-то другое состояние. В 1939 году Оппенгеймер и Хартланд Снайдер на идеализированной модели доказали, что массивная коллапсирующая звезда стягивается к своему гравитационному радиусу. Из их формул фактически следует, что звезда на этом не останавливается, однако соавторы воздержались от столь радикального вывода.


09.07.1911 - 13.04.2008

Окончательный ответ был найден во второй половине XX века усилиями целой плеяды блестящих физиков-теоретиков, в том числе и советских. Оказалось, что подобный коллапс всегда сжимает звезду «до упора», полностью разрушая ее вещество. В результате возникает сингулярность, «суперконцентрат» гравитационного поля, замкнутый в бесконечно малом объеме. У неподвижной дыры это точка, у вращающейся — кольцо. Кривизна пространства-времени и, следовательно, сила тяготения вблизи сингулярности стремятся к бесконечности. В конце 1967 года американский физик Джон Арчибальд Уилер первым назвал такой финал звездного коллапса черной дырой. Новый термин полюбился физикам и привел в восторг журналистов, которые разнесли его по всему миру (хотя французам он сначала не понравился, поскольку выражение trou noir наводило на сомнительные ассоциации).

Важнейшее свойство черной дыры — что бы в нее ни попало, обратно оно не вернется. Это касается даже света, вот почему черные дыры и получили свое название: тело, поглощающее весь свет, падающий на него, и не испускающее собственного кажется абсолютно черным. Согласно общей теории относительности, если объект приближается к центру черной дыры на критическое расстояние — это расстояние называется радиусом Шварцшильда, — он уже никогда не сможет вернуться назад. (Немецкий астроном Карл Шварцшильд (Karl Schwarzschild, 1873-1916) в последние годы своей жизни, используя уравнения общей теории относительности Эйнштейна, рассчитал гравитационное поле вокруг массы нулевого объема.) Для массы Солнца радиус Шварцшильда составляет 3 км, то есть, чтобы превратить наше Солнце в черную дыру, нужно уплотнить всю его массу до размера небольшого городка!


Внутри радиуса Шварцшильда теория предсказывает явления еще более странные: всё вещество черной дыры собирается в бесконечно малую точку бесконечной плотности в самом ее центре — математики называют такой объект сингулярным возмущением. При бесконечной плотности любая конечная масса материи, математически говоря, занимает нулевой пространственный объем. Происходит ли это явление реально внутри черной дыры, мы, естественно, экспериментально проверить не можем, поскольку всё попавшее внутрь радиуса Шварцшильда обратно не возвращается.

Не имея, таким образом, возможности «рассмотреть» черную дыру в традиционном смысле слова «смотреть», мы, тем не менее, можем обнаружить ее присутствие по косвенным признакам влияния ее сверхмощного и совершенно необычного гравитационного поля на материю вокруг нее.

Сверхмассивные черные дыры

В центре нашего Млечного Пути и других галактик располагается невероятно массивная черная дыра в миллионы раз тяжелее Солнца. Эти сверхмассивные черные дыры (такое название они получили) были обнаружены по наблюдениям за характером движения межзвездного газа вблизи центров галактик. Газы, судя по наблюдениям, вращаются на близком удалении от сверхмассивного объекта, и простые расчеты с использованием законов механики Ньютона показывают, что объект, притягивающий их, при мизерном диаметре обладает чудовищной массой. Так закрутить межзвездный газ в центре галактики может только черная дыра. Фактически астрофизики нашли уже десятки таких массивных черных дыр в центрах соседних с нашей галактик, и сильно подозревают, что центр любой галактики — суть черная дыра.


Черные дыры со звездной массой

Согласно нашим нынешним представлениям об эволюции звезд, когда звезда с массой, превышающей примерно 30 масс Солнца, гибнет со вспышкой сверхновой, внешняя ее оболочка разлетается, а внутренние слои стремительно обрушиваются к центру и образуют черную дыру на месте израсходовавшей запасы топлива звезды. Изолированную в межзвездном пространстве черную дыру такого происхождения выявить практически невозможно, поскольку она находится в разреженном вакууме и никак не проявляет себя в плане гравитационных взаимодействий. Однако, если такая дыра входила в состав двойной звездной системы (две горячих звезды, обращающихся по орбите вокруг их центра масс), черная дыра будет по-прежнему оказывать гравитационное воздействие на парную ей звезду. Астрономы сегодня имеют более десятка кандидатов на роль звездных систем такого рода, хотя строгих доказательств не получено в отношении ни одной из них.

В двойной системе с черной дырой в ее составе вещество «живой» звезды будет неизбежно «перетекать» в направлении черной дыры. И закручиваться высасываемое черной дырой вещество при падении в черную дыру будет по спирали, исчезая при пересечении радиуса Шварцшильда. При подходе к роковой границе, однако, засасываемое в воронку черной дыры вещество будет неизбежно уплотняться и разогреваться в силу учащения соударений между поглощаемыми дырой частицами, пока не разогреется до энергий излучения волн в рентгеновском диапазоне спектра электромагнитного излучения. Астрономы могут измерить периодичность изменения интенсивности рентгеновского излучения такого рода и вычислить, сопоставив ее с другими доступными данными, примерную массу объекта, «перетягивающего» на себя материю. Если масса объекта превышает предел Чандрасекара (1,4 массы Солнца), этот объект не может являться белым карликом, в которого суждено выродиться нашему светилу. В большинстве выявленных случаев наблюдения подобных двойных рентгеновских звезд массивным объектом является нейтронная звезда. Однако насчитано уже более десятка случаев, когда единственным разумным объяснением является присутствие в двойной звездной системе черной дыры.

Все другие типы черных дыр куда более спекулятивны и основаны исключительно на теоретических изысканиях — экспериментальных подтверждений их существования не имеется вовсе. Во-первых, это черные мини-дыры с массой, сопоставимой с массой горы и сжатой до радиуса протона. Идею об их зарождении на начальной стадии формирования Вселенной непосредственно после Большого взрыва высказал английский космолог Стивен Хокинг (см. Скрытый принцип необратимости времени). Хокинг предположил, что взрывами мини-дыр можно объяснить действительно загадочный феномен точеных вспышек гамма-излучения во Вселенной. Во-вторых, некоторые теории элементарных частиц предсказывают существование во Вселенной — на микро-уровне — настоящего решета из черных дыр, представляющих собой своего рода пену из отбросов мироздания. Диаметр таких микро-дыр предположительно составляет около 10-33 см — они в миллиарды раз мельче протона. На данный момент у нас нет каких-либо надежд на экспериментальную проверку даже самого факта существования таких черных дыр-частиц, не говоря уже о том, чтобы хоть как-то исследовать их свойства.


А что произойдет с наблюдателем, если он вдруг окажется по ту сторону гравитационного радиуса, иначе именуемого горизонтом событий. Здесь начинается самое удивительное свойство черных дыр. Не зря, говоря о черных дырах, мы всегда упоминали время, точнее пространство-время. По теории относительности Эйнштейна, чем быстрее движется тело, тем больше становится его масса, но тем медленнее начинает идти время! На малых скоростях в нормальных условиях этот эффект незаметен, но если тело (космический корабль) движется со скоростью близкой к скорости света, то масса его увеличивается, а время замедляется! При скорости тела равной скорости света, масса обращается в бесконечность, а время останавливается! Об этом говорят строгие математические формулы. Вернемся к черной дыре. Представим себе фантастическую ситуацию, когда звездолет с космонавтами на борту приближается к гравитационному радиусу или горизонту событий. Понятно, что горизонт событий назван так потому, что мы может наблюдать какие-либо события (вообще что-то наблюдать) только до этой границы. Что за этой границей мы наблюдать не в состоянии. Тем не менее, находясь внутри корабля, приближающегося к черной дыре, космонавты будут чувствовать себя, как и раньше, т.к. по их часам время будет идти «нормально». Космический корабль спокойно пересечет горизонт событий, и будет двигаться дальше. Но поскольку скорость его будет близка к скорости света, то до центра черной дыры космический корабль достигнет, буквально, за миг.

А для внешнего наблюдателя космический корабль просто остановится на горизонте событий, и будет находиться там практически вечно! Таков парадокс колоссального тяготения черных дыр. Закономерен вопрос, а останутся ли живы космонавты, уходящие в бесконечность по часам внешнего наблюдателя. Нет. И дело вовсе не в громадном тяготении, а в приливных силах, которые у столь малого и массивного тела сильно меняются на малых расстояниях. При росте космонавта 1 м 70 см приливные силы у его головы будут гораздо меньше, чем у ног и его просто разорвет уже на горизонте событий. Итак, мы в общих чертах выяснили, что такое черные дыры, но речь пока шла о черных дырах звездной массы. В настоящее время астрономам удалось обнаружить сверхмассивные черные дыры, масса которых может составлять миллиард солнц! Сверхмассивные черные дыры по свойствам не отличаются от своих меньших собратьев. Они лишь гораздо массивнее и, как правило, находятся в центрах галактик - звездных островов Вселенной. В центре Нашей Галактики (Млечный Путь) тоже имеется сверхмассивная черная дыра. Колоссальная масса таких черных дыр позволят вести их поиск не только в Нашей Галактике, но и в центрах далеких галактик, находящихся на расстоянии миллионы и миллиарды световых лет от Земли и Солнца. Европейские и американские ученые провели глобальный поиск сверхмассивных черных дыр, которые, согласно современным теоретическим выкладкам, должны находиться в центре каждой галактики.

Современные технологии позволяют выявить наличие этих коллапсаров в соседних галактиках, но обнаружить их удалось совсем немного. Значит, либо черные дыры просто скрываются в плотных газопылевых облаках в центральной части галактик, либо они находятся в более отдаленных уголках Вселенной. Итак, черные дыры можно обнаружить по рентгеновскому излучению, испускаемому во время аккреции вещества на них, и чтобы произвести перепись подобных источников, в околоземное комическое пространство были запущены спутники с рентгеновскими телескопами на борту. Занимаясь поиском источников Х-лучей, космические обсерватории «Чандра» (Chandra) и «Росси» (Rossi) обнаружили, что небо заполнено фоновым рентгеновским излучением, и является в миллионы раз более ярким, чем в видимых лучах. Значительная часть этого фонового рентгеновского излучения неба должна исходить от черных дыр. Обычно в астрономии говорят о трех типах черных дыр. Первый — черные дыры звездных масс (примерно 10 масс Солнца). Они образуются из массивных звезд, когда в тех заканчивается термоядерное горючее. Второй — сверхмассивные черные дыры в центрах галактик (массы от миллиона до миллиардов солнечных). И наконец, первичные черные дыры, образовавшиеся в начале жизни Вселенной, массы которых невелики (порядка массы крупного астероида). Таким образом, большой диапазон возможных масс черных дыр остается незаполненным. Но где эти дыры? Заполняя пространство рентгеновскими лучами, они, тем не менее, не желают показывать свое истинное «лицо». Но чтобы построить четкую теорию связи фонового рентгеновского излучения с черными дырами, необходимо знать их количество. На данный момент космическим телескопам удалось обнаружить лишь небольшое количество сверхмассивных черных дыр, существование которых можно считать доказанным. Косвенные признаки позволяют довести количество наблюдаемых черных дыр, ответственных за фоновое излучение, до 15%. Приходится предполагать, что остальные сверхмассивные черные дыры просто прячутся за толстым слоем пылевых облаков, которые пропускают только рентгеновские лучи высокой энергии или же находятся слишком далеко для обнаружения современными средствами наблюдений.


Сверхмассивная черная дыра (окрестности) в центре галактики M87 (рентгеновское изображение). Виден выброс (джет) от горизонта событий. Изображение с сайта www.college.ru/astronomy

Поиск скрытых черных дыр — одна из главных задач современной рентгеновской астрономии. Последние прорывы в этой области, связанные с исследованиями при помощи телескопов «Чандра» и «Росси», тем не менее охватывают лишь низкоэнергетический диапазон рентгеновского излучения — приблизительно 2000-20 000 электрон-вольт (для сравнения, энергия оптического излучения — около 2 электрон-вольт). Существенные поправки в эти исследования может внести европейский космический телескоп «Интеграл» (Integral), который способен проникнуть в еще недостаточно изученную область рентгеновского излучения с энергией 20 000-300 000 электрон-вольт. Важность изучения этого типа рентгеновских лучей состоит в том, что хотя рентгеновский фон неба имеет низкую энергетику, но на этом фоне проявляются множественные пики (точки) излучения с энергией около 30 000 электрон-вольт. Ученые еще только приоткрывают завесу тайны того, что порождает эти пики, а «Интеграл» — первый достаточно чувствительный телескоп, способный найти подобные источники рентгеновских лучей. По предположению астрономов, лучи высокой энергии порождают так называемые Комптон-объекты (Compton-thick), то есть сверхмассивные черные дыры, окутанные пылевой оболочкой. Именно Комптон-объекты ответственны за пики рентгеновского излучения в 30 000 электрон-вольт на поле фонового излучения.

Но, продолжая исследования, ученые пришли к выводу, что Комптон-объекты составляют лишь 10% от того числа черных дыр, которые должны создавать пики высоких энергий. Это — серьезное препятствие для дальнейшего развития теории. Значит, недостающие рентгеновские лучи поставляют не Compton-thick, а обычные сверхмассивные черные дыры? Тогда как быть с пылевыми завесами для рентгеновских лучей низкой энергии.? Ответ, похоже, кроется в том, что многие черные дыры (Комптон-объекты) имели достаточно времени, чтобы поглотить весь газ и пыль, которые окутывали их, но до этого имели возможность заявить о себе рентгеновским излучением высокой энергии. После поглощения всего вещества такие черные дыры уже оказались неспособными генерировать рентгеновское излучение на горизонте событий. Становится понятно, почему эти черные дыры нельзя обнаружить, и появляется возможность отнести недостающие источники фонового излучения на их счет, так как хотя черная дыра уже не излучает, но ранее созданное ей излучение продолжает путешествие по Вселенной. Тем не менее, вполне возможно, что недостающие черные дыры более скрыты, чем предполагают астрономы, то есть то, что мы не их видим, вовсе не значит, что их нет. Просто пока у нас не хватает мощности средств наблюдений, чтобы увидеть их. Тем временем ученые из NASA планируют расширить диапазон поиска скрытых черных дыр еще дальше во Вселенную. Именно там находится подводная часть айсберга, считают они. В течение нескольких месяцев исследования будут проводиться в рамках миссии «Свифт» (Swift). Проникновение в глубокую Вселенную позволит обнаружить прячущиеся черные дыры, найти недостающее звено для фонового излучения и пролить свет на их активность в раннюю эпоху Вселенной.

Некоторые черные дыры считаются более активными, чем их спокойные соседи. Активные черные дыры поглощают окружающее вещество, а если в полет тяготения попадет «зазевавшаяся» звезда, пролетающая мимо, то она непременно будет «съедена» самым варварским способом (разорванная в клочья). Поглощаемое вещество, падая на черную дыру, нагревается до огромных температур, и испытывает вспышку в гамма, рентгеновском и ультрафиолетовом диапазоне. В центре Млечного Пути так же находится сверхмассивная черная дыра, но ее труднее изучать, чем дыры в соседних или даже далеких галактиках. Это связано с плотной стеной газа и пыли, встающей на пути центру Нашей Галактики, ведь Солнечная система находится почти на краю галактического диска. Поэтому наблюдения активности черных дыр гораздо эффективней у тех галактик, ядро которых хорошо просматривается. При наблюдении одной из далеких галактик, расположенной в созвездии Волопаса на расстоянии 4-х миллиардов световых лет, астрономам впервые удалось отследить от начала и почти до конца процесс поглощения звезды супермассивной черной дырой. В течение тысяч лет этот гигантский коллапсар тихо-мирно покоился в центре безымянной эллиптической галактики, пока одна из звезд не осмелилась приблизиться к ней достаточно близко.

Мощная гравитация черной дыры разорвала звезду на части. Сгустки вещества начали падать на черную дыру и при достижении горизонта событий, ярко вспыхивать в ультрафиолетовом диапазоне. Эти вспышки и зафиксировал новый космический телескоп NASA Galaxy Evolution Explorer, изучающий небо в ультрафиолете. Телескоп и сегодня продолжает наблюдать за поведением отличившегося объекта, т.к. трапеза черной дыры еще не закончилась, а остатки звезды продолжают падать в бездну времени и пространства. Наблюдения таких процессов, в конце концов, помогут лучше понять, как черные дыры развиваются вместе с их родительскими галактиками (или, наоборот, галактики развиваются с родительской черной дырой). Более ранние наблюдения показывают, что подобные эксцессы не редкость во Вселенной. Ученые подсчитали, что в среднем звезда поглощается сверхмассивной черной дырой типичной галактики один раз в 10000 лет, но поскольку галактик большое количество, то наблюдать поглощения звезд можно гораздо чаще.


источник