Радио схемы - авометр своими руками. Электронный омметр «на скорую руку Цифровой омметр своими руками схема

Начинающим радиолюбителя можно посоветовать собрать достаточно простой измерительный прибор называемый авометром. Его активно используют при ремонте настройки различных аналоговых электронных устройств. Авометр сочетает в себе амперметр, вольтметр, а иногда еще и испытатель транзисторов и диодов. Конечно, любой китайский мультиметр не чем не уступает по функциональности, но не в надежности, а тем более в ремонтопригодности.


Схема простого авометра

Омметр: микроамперметр ИП1, источник питания напряжением 1,5 В и добавочные рези-сторы R1 «Уст. 0» и R2. Перед началом измерения щупы устройства соединяют, и с помощью подстроечного резистора R1 стрелку микроамперметра выводят на конечную отметку шкалы, являющуюся нулем омметра. Затем щупами касаются выводов участка цепи и по шкале омметра определяют полученное значение сопротивления.


Четырехпредельный вольтметр состоит из той же головки микроамперметра ИП1 и добавочных резисторов R3-R6. С резистором R3 отклонение стрелки микроамперметра на всю шкалу соответствует напряжению 1 В, с резистором R4-3 В, с резистором R5- 10 В, с резистором R6-30 В.

Миллиамперметр пятипредельный: 0-1, 0-3, 0-10, 0-30 и 0-100 мА. Пределы измерений задает универсальный шунт из резисторов R7-R11, к которому через кнопку подключен микроамперметр.


Конструкция авометра показана на рисунке выше. Головка микроамперметра типа М49 с сопротивлением рамки 300 Ом. С функцией гнезд Гн1-Гн11 отлично справляется часть десятиконтактного разъема. Резисторы R9-R11 типа МОИ, остальные МЛТ.

Калибровка вольтметра и миллиамперметра заключается в подборе добавочных резисторов и универсального шунта под максимальные значения напряжения и тока соответствующих пределов измерения, а омметра - к разметке шкалы по эталонным резисторам.

Калибровку вольтметра и микроамперметра можно осуществить по схеме ниже:


Параллельно источнику питания напряжением 13,5 В подсоедините переменный резистор Rp сопротивлением 2-3 кОм, который используется для регулировки, а между его движком и нижним контактом,- параллельно соединенные образцовые вольтметры. Предварительно движок регулировочного сопротивления установите в крайнее нижнее положение, а калибруемый вольтметр подсоедините на первый предел измерений до 1 В. Постепенно увеличивайте подаваемое напряжение, установите на вольтметре по образцовому вольтметру напряжение. Если при этом стрелка настраиваемого вольтметра не доходит до последней отметки шкалы, это говорит о том, что сопротивление добавочного резистора R3 оказалось выше, чем должно быть, а если уходит за пределы шкалы, то ниже. Точно так же повторите, но при напряжениях 3 и 10 В, регулируя резисторы R4 и R5.

Для калибровки миллиамперметра нужен: эталонный миллиамперметр на ток до 100 мА и два переменных резистора - пленочный (СП, СПО) сопротивлением 5 10 кОм и проволочный на 50-100 Ом. Первый регулировочный резистор предназначен для подгонки резисторов R7-R9, второй R10 и R11 универсального шунта.

Шкала самодельного авометра может выглядеть как на рисунке ниже. Верхняя из них предназначена для измерения сопротивлений, нижняя шкала вольтметра и миллиамперметра. Их надо возможно точнее начертить по форме шкалы микроамперметра. Затем осторожно извлекаем магнитную головку из корпуса и наклеиваем новую шкалу, точно совместив дугу шкалы омметра с прежней шкалой. В описанном самодельном авометре использован микроамперметр на ток 300 мкА с сопротивлением рамки 300 Ом. При таких параметрах микроамперметра относительное входное сопротивление вольтметра будет около 3,5 кОм/В. Увеличить его и тем самым уменьшить влияние вольтметра на режим измерения можно только применением более чувствительной головки микроамперметра. Но при замене микроамперметра с более чувствительной головкой надо учитывать его параметры I и К, а также пересчитать сопротивление всех сопротивлений авометра. Таким методом можно проверить или откалибровать любой стрелочный или цифровой вольтметр (амперметр). В качестве эталонного рекомендуется использовать цифровой прибор заводского исполнения.


Наука начинается с умения измерять.
Д.И.Менделеев

В практике радиолюбителя приходится встречаться с необходимостью измерения низкоомных сопротивлений (до 1 Ом). Решить эту задачу и предназначен простой миллиомметр. Этим устройством можно с достаточной для радиолюбителя точностью измерять сопротивления от 0,0001 до 1 Ома.
При измерении малых сопротивлений с помощью цифровых мультиметров последовательно с измеряемым сопротивлением, назовём его Rx, неизбежно включено сопротивление соединительных проводов, переходное сопротивление входных клемм или гнёзд, контактов переключателя и т.п. Это сопротивление (Rпр.) находится в пределах 0,1…0,4 Ом. Вследствие вышеуказанных причин, реально измеренное сопротивление будет больше Rx на некоторую величину (Rx+Rпр.). Погрешность может доходить до 50 % при измерении очень малых сопротивлений. Для больших сопротивлений эта ошибка невелика, и её можно не учитывать.
Из изложенного понятно, что надо исключить влияние соединительных проводов и т.п. на результат измерения очень малых сопротивлений. Существует метод измерения низкоомных сопротивлений по 4-зажимной схеме на постоянном токе. Применение данного метода полностью исключает влияние соединительных проводов на результат измерения малых сопротивлений. Этот метод используется в данном миллиомметре. Кратко рассмотрим суть метода измерения по 4-зажимной схеме.


Рисунок 1

На рис.1 (слева) приведена схема измерения сопротивления по 2-зажимной схеме. Красным цветом показан путь измерительного тока. Как видим, ток протекает и через измеряемый резистор и через сопротивление проводов (Rпр) мультиметра, что вносит погрешность в результат измерения. Сопротивление вольтметра не оказывает влияния на измерение Rx, так как обладает очень большим (до 10 МОм) внутренним сопротивлением Rвх. На рис.1 (справа) показана 4-зажимная схема измерения. Из схемы понятно, что сопротивление проводов не оказывает влияния на результат измерения, так как включено последовательно с очень большим внутренним сопротивлением вольтметра. Измерительный ток протекает только через резистор Rx.

Вот схема миллиомметра (рис.2).


Рисунок 2

Источником питания схемы является батарея с напряжением 9 В. Выключателем SB напряжение от батареи подаётся на микросхему стабилизатора напряжения типа 7806. Конденсатор С1 служит для подавления скачков напряжения. Резисторы R1, VR2 необходимы для установки выходного напряжения микросхемы в пределах 6 В. Потенциометром VR2 устанавливается точная величина выходного напряжения величиной 6В. Потенциометром VR3 устанавливается выходной ток, протекающий через измеряемый резистор Rx равный 100мА (0,1 А). Поскольку резистор VR3 имеет относительно большое сопротивление по сравнению с измеряемым Rx, то погрешность, возникающая при этом вследствие наличия сопротивлений Rx (от 1 мОм до 1 Ом), будет оказывать влияние на величину тока 100мА в пределах не более 2%.

Конструкция миллиомметра
Внешний вид и вид на монтаж деталей миллиомметра показан на фото 1, 2 и 3. Монтаж деталей выполнен навесным способом, микросхема на радиатор не устанавливалась. В качестве потенциометров VR2, VR3 использованы многооборотные резисторы для более точной установки напряжения и тока. Корпус прибора пластмассовый, размеры 11*6*4 см. Клеммы К1 иК2 металлические. Выключатель питания типа МТ-1.


Фото 1



Фото 2



Фото 3

Подготовка к измерению сопротивления
Подсоединить щупы цифрового вольтметра к клеммам К1 и К2. Подать напряжение от источника питания на схему, включив выключатель SB. Потенциометром VR2 установить выходное напряжение величиной 6 В при неподключённом резисторе Rx. Далее, отключив SB, переключаем мультиметр на измерение тока (щупы остаются на прежнем месте), включаем SB и потенциометром VR3 устанавливаем величину выходного тока 0,1А.


Фото 4



Фото 5

Проведение измерений
Для начала возьмём несколько резисторов известной величины (0,1; 0,2; 0,5 Ом) и измерим их сопротивление, чтобы убедиться в работоспособности миллиомметра.


Фото 6

Не включая питание под клеммы К1 и К2, зажимаем выводы измеряемого сопротивления. Щупы цифрового вольтметра устанавливаем в гнёзда клемм К1 и К2, а предел измерения на отметку 200мВ. Включаем питание и считываем показания прибора.


Фото 7

Допустим, величина измеренного напряжения 22,3 мВ. Ток ранее был установлен 100мА. Делим напряжение на ток и получаем искомое сопротивление. В нашем случае: Rx=22,3: 100= 0,223 Ом. Конечно, принято делить вольты на амперы, чтобы получить Омы, но так удобнее, не надо переводить мВ и мА в вольты и амперы. Точно также измеряем другие эталонные резисторы. Но всё-таки вспомним, что 1 В-1000мВ; 100мВ-0,1В; 10мВ-0,01В; 1мВ-0,001В; 1А-1000мА; 100мА-0,1А. В моём мультиметре наименьший предел измерения - 200мВ, цена деления - 0,1 мВ. Входное сопротивление - около 10 МОм. То есть теоретически можно измерить сопротивление величиной 0,001 Ом (1мОм). Вольтметры с низким входным сопротивлением для наших измерений не годятся.
Итак, мы определили, что проведенные измерения дали реальный результат. Теперь переходим к измерению неизвестного сопротивления. В качестве неизвестных сопротивлений будем использовать шунты из разобранных авометров. При измерении сопротивления самого большого шунта падение напряжения составило 0,5 мВ, ток 100 мА.


Фото 8

Величина сопротивления шунта, рассчитанная по закону Ома, получилась 0,005 Ом. Сопротивление малого шунта, измеренного миллиомметром, равно 0,212 Ом (падение напряжения - 21,2 мВ).
Практическое применение миллиомметр может найти при подборе шунтов для зарядных устройств, измерении сопротивлений в оконечных каскадах усилителей низкой частоты и других устройств, где необходимо измерение малых сопротивлений (переходное сопротивление контактов выключателей, реле и др.).
Измерение низкоомных сопротивлений можно производить и при токах более 0,1 А. Для этого необходимо собрать стабилизатор тока на соответствующий ток. Схемы стабилизаторов приведены на рис.3.


Рисунок 3

Стабилизатор включается в схему вместо потенциометра VR3. Конечно, это повлечёт за собой установку микросхемы и транзистора на радиаторы соответствующего размера, а также к увеличению размеров прибора.
Сопротивления менее 1мОм (1000 мкОм) измеряют с помощью микроомметров. Измерительный ток может быть величиной до 150 А. Напряжение большой роли не играет.
Если необходимо изготовить шунт для зарядного устройства, а нихрома, константана, манганина нет, то можно воспользоваться шпилькой подходящего диаметра, как показано на фото 9.


Фото 9

Материал шпильки - сталь, бронза, медь и т.п. Передвигая один из контактов по шпильке добиваются нужного сопротивления шунта. Расчёт сопротивления шунта несложен. Будут вопросы - обсудим.

ИСТОЧНИК: Журнал Радио №1 1998 г.

В. СЫЧЕВ г. Москва

При изготовлении электроизмерительных приборов могут возникнуть некоторые трудности, связанные с изготовлением приборных шунтов. Эти шунты обычно низкоомные. и подобрать их нужно тщательно, так как от этого зависит точность измерителя. Для этого предлагается изготовить простой электронный омметр, которым можно измерить малые сопротивления при линейной шкале на четырех пределах: 10, 25.100 и 250 Ом.

Схема прибора изображена на рисунке. Он состоит из источника стабилизированного тока на транзисторе VT1. режим работы которого задают стабилитрон VD1 и резисторы R3. R4, R5, и вольтметра (микроамперметр РА1 и резисторы R1, R2).

Коллекторный ток транзистора VT1 создает на резисторе Rx напряжение, пропорциональное его сопротивлению. Поэтому, если откалибровать (т.е. установить стрелочный указатель микроамперметра на последнее деление шкалы) измерительную часть по определенному образцовому резистору Roop. то измеряемое сопротивление можно будет считывать по линейной шкале измерительного прибора.

Работа с прибором сводится к следующему. К зажимам "Rx" присоединяют проверяемый резистор (например, изготавливаемый шунт), а к зажимам "Ro6p" -образцовый резистор, соответствующий выбранному пределу измерения. Переключатель SA2 переводят на соответствующий предел измерения, а переключатель SA1 - в положение "К" (калибровка). После подачи напряжения питания нажатием на кнопку SB1 подстроечным резистором R4 устанавливают стрелочный указатель на последнее деление шкалы. Затем переключатель SA1 переводят в положение "И" (измерение) и измеряют сопротивление Rx. Точность измерения в основном будет зависеть от точности образцовых резисторов.

Если во вспомогательном приборе использовать источник питания с напряжением 8...9 В или менее чувствительную головку, то стабилитрон Д814А нужно заменить на КС139А или КС147А, сопротивление резистора R5 уменьшить до 100 Ом. a R4 - до 470 - 680 Ом. Кроме того, если сопротивление образцового резистора не соответствует точно необходимому пределу измерения, то калибровку измерителя допустимо произвести с установкой показания, соответствующего номинальному значению этого резистора, если оно составляет не менее 80% от предела.

В приборе могут быть применены образцовые резисторы типов МТ, БЛП, С2-29В. С2-36. С2-14: резисторы МЛТ (R1. R3. R4. R5): резистор R2 типов СПО-0.5, CП3-4б или аналогичный; транзисторы серий КТ814. КТ816 с коэффициентом передачи тока базы более 50. В качестве микроамперметра РА1 применима измерительная головка, которая будет установлена в изготавливаемый прибор (например, 50 или 250 мкА). Переключатели SA1 и SA2 - тумблеры типа ТВ2-1. Вообще говоря, переключатель SA1 можно и исключить, оставив одну пару зажимов, к которым сначала подключить резистор Rocp. а после калибровки - резистор Rx.

В случае применения в приборе более распространенных транзисторов структуры п-р-п следует изменить полярность включения источника питания стабили трона и микроамперметра.

Начинающим радиолюбителя можно рекомендовать изготовить не сложный прибор, наиболее часто используемым при ремонте или настройки радиотехнических устройств. Авометр объединяет в себе много­предельные амперметр и вольтметр по­стоянного и переменного тока, омметр, а иногда еще и испытатель маломощ­ных транзисторов.

Принципиальная схема подобного упрощенного измерительного при­бора показана на рис. ниже. Он позволя­ет измерять постоянные токи до 100мА, постоянные напряжения до 30 В и со­противления от 50 Ом до 50 кОм. Пе­реключение видов и пределов измере­ния осуществляется включением одного из щупов в гнезда Гн1-Гн10. Второй щуп, вставленный в гнездо Гн11 «Общ.», общий для всех видов и пре­делов измерения.

Омметр однопредельный. В него вхо­дят: микроамперметр ИП1, источник питания Э1 напряжением 1,5 В и добавочные рези­сторы R1 «Уст. 0» и R2. Перед изме­рением щупы прибора соединяют, и пе­ременным резистором R1 стрелку мик­роамперметра устанавливают на конеч­ную отметку шкалы, являющуюся ну­лем омметра. Затем щупами касаются выводов резистора, обмотки трансформа­тора или проводников участка цепи, сопротивление которых надо измерить, и по шкале омметра определяют ре­зультат измерения.

Четырехпредельный вольтметр обра­зуют тот же микроамперметр ИП1 и добавочные резисторы R3-R6. С ре­зистором R3 (при включении второго Щупа в гнездо Гн2) отклонение стрел­ки микроамперметра на всю шкалу соответствует напряжению 1 В, с ре­зистором R4-3 В, с резистором R5- 10 В, с резистором R6-30 В.

Миллиамперметр пятипредельный: 0-1, 0-3, 0-10, 0-30 и 0-100 мА. Его образует универсальный шунт составленный из резисторов R7-R11, к которому кнопкой Кн1 подключают микроамперметр ИП1. Так сделано для того, чтобы при измерении микро­амперметр подключался к шунту, через который течет большая часть измеряе­мого тока, а не наоборот.

Конструкция рекомендуемого комби­нированного измерительного прибора показана на рис. Микроамперметр типа М49 на ток полного отклонена стрелки 300 мкА с сопротивлением рам­ки 300 Ом. Переменный резистор R1 (СПО-0,5), кнопка КН (КМ1-1) и все гнезда прибора укреплены непосредст­венно на лицевой панели, выпиленной из листового текстолита толщиной 2 мм. Роль гнезд Гн1-Гн11 выполняет гнездовая часть десятиконтактного разъема. Низкоомные резисторы R9-R11 типа МОИ (или проволочные), остальные МЛТ на мощность рассеяния 0,5 или 0,25 Вт. Необходимые сопро­тивления резисторов подбирают при налаживании путем их замены, параллельным или последовательным соеди­нением нескольких резисторов. В опи­сываемом приборе каждый из резисто­ров R3 и R6, например, составлен из двух последовательно соединенных ре­зисторов, каждый из резисторов R5 и R11 также из двух резисторов, но со­единенных параллельно.

Калибровка вольтметра и миллиам­перметра заключается в подгонке со­противлений добавочных резисторов и универсального шунта под максималь­ные напряжения и токи соответствую­щих пределов измерения, а омметра - к разметке шкалы по образцовым ре­зисторам.

Калибровку вольтметра производите по схеме, показанной на рис. Па­раллельно батарее Б1 напряжением 13,5 В (или от БП) подключите пе­ременный резистор Rp сопротивлением 2-3 кОм, который будет выполнять роль регулировочного, а между его движком и нижним (по схеме) выво­дом,- параллельно соединенные само­дельный калибруемый (V K) и образ­цовый (V 0) вольтметры. Образцовым может быть вольтметр заводского аво­метра. Предварительно движок регу­лировочного резистора поставьте в край­нее нижнее (по схеме) положение, а калибруемый вольтметр включите на первый предел измерений - до 1 В. Постепенно увеличивая напряжение, по­даваемое от батареи на вольтметры, установите на них по образцовому вольтметру напряжение, точно равное 1 В. Если при этом стрелка калибруе­мого вольтметра не доходит до ко­нечной отметки шкалы, это укажет на то, что сопротивление добавочного ре­зистора R3 оказалось больше, чем на­до, а если уходит за пределы шкалы, то - меньше. Подбирая этот резистор, добейтесь, чтобы при напряжении 1 В стрелка вольтметра устанавливалась точно против конечной отметки шкалы.

Точно так же, но при напряжениях 3 и 10 В, фиксируемых образцовым вольтметром, подгоняйте добавочные резисторы R4 и R5 следующих двух пределов измерений. Для калибровки четвертого предела измерений не обя­зательно подавать на вольтметры на­пряжение 30 В. Можно подать 10 В и подбором резистора R6 установить стрелку калибруемого вольтметра на отметку, соответствующую первой третьей части шкалы. При этом откло­нение его стрелки на всю шкалу будет соответствовать напряжению 30 В.

Для калибровки миллиамперметра потребуются: миллиамперметр на ток до 100 мА, свежий элемент 343 или 373 и два переменных резистора - пленочный (СП, СПО) сопротивлением 5-10 кОм и проволочный сопротивле­нием 50-100 Ом. Первый из этих ре­гулировочных резисторов будете ис­пользовать при подгонке резисторов R7-R9, второй - при подгонке рези-, сторов R10 и R11 универсального шунта.

Первым подгоняйте резистор R7 шунта. Для этого соедините последо­вательно (рис. б): образцовый мил­лиамперметр мА 0 , калибруемый мА к, включенный на первый предел изме­рений (до 1 мА), элемент Э1 и пере­менный резистор R p . Нажмите кнопку Кн1 «/» (см. рис. 17) авометра и, плавно уменьшая вводимое сопротивле­ние регулировочного резистора R v , ус­тановите в цепи ток, равный 1 мА. Сопротивление резистора R7 должно быть таким, чтобы при таком токе в цепи стрелка калибруемого миллиам­перметра была против конечной отмет­ки шкалы.

Аналогично подгоняйте: резистор R8 - на пределе 3 мА, резистор R9- на пределе 10 мА, а затем, заменив пленочный регулировочный резистор проволочным, резистор R10 - на пре­деле 30 мА и, наконец, резистор R11- на пределе 100 мА. Подбирая сопро­тивление очередного резистора шунта, уже подогнанные не трогайте - можно сбить калибровку прибора на первых пределах измерения.

Разметить шкалу омметра проще всего с помощью постоянных резисто­ров с допуском от номинала ±5%. Делайте это так. Сначала замкните Щупы и регулировочным резистором R1 «Уст. О» установите стрелку микро­амперметра на конечную отметку шкалы, соответствующую нулю омметра. За­тем разомкните щупы и подключайте к ним резисторы с номинальными со­противлениями: 50, 100, 200, 300, 400, 500 Ом, 1 «Ом и т. д. примерно до 50-60 кОм, замечая всякий раз на шкале точку, до которой отклоняется стрелка прибора. И в этом случае ре­зисторы нужных сопротивлений со­ставляйте из резисторов других номи­налов. Например, резистор сопротивле­нием 40 Ом можно составить из двух резисторов по 20 Ом, резистор на 50 кОм из резисторов сопротивлением 20 и 30 кОм. По точкам отклонений стрелки, соответствующим разным со­противлениям образцовых резисторов, размечайте (градуируйте) шкалу ом­метра.

Шкалы самодельного комбинирован­ного измерительного прибора должны иметь вид, показанный на рис.

Верхняя из них - шкала омметра, нижняя - общая шкала вольтметра и миллиамперметра. Их надо возможно точнее начертить на плотной лакиро­ванной бумаге по форме шкалы микро­амперметра. Затем осторожно извлечь магнитоэлектрическую систему прибора из корпуса и наклеить новую шкалу, точно совместив дугу шкалы омметра с прежней шкалой. Чтобы не разби­рать микроамперметр, шкалы самодель­ного прибора можно начертить на плотной бумаге в соответствующем масштабе прямолинейными и наклеить ее на лицевую или переднюю боковую стенку ящика прибора.

В описанном комбинированном при­боре использован микроамперметр на ток I и =300 мкА с сопротивлением рамки Rи, равным 300 Ом. При таких параметрах микроамперметра относи­тельное входное сопротивление вольт­метра не превышает 3,5 кОм/В. Увели­чить относительное входное сопротив­ление и тем самым уменьшить влияние вольтметра на режим в измеряемой це­пи можно только использованием бо­лее чувствительного микроамперметра. Так, например, с микроамперметром на ток I=200 мкА относительное вход­ное сопротивление вольтметра будет 5, а с микроамперметром на ток I =100мка — 10кОм/В. С такими приборами расширится и предел измерения омметром. Но при замене микроамперметра более чувствительным надо с учетом его параметров I и К пересчитать сопротивление всех сопротивлений авометра.

Таким способом можно проверить или откалибровать любой стрелочный или цифровой вольтметр (амперметр). В качестве образцового рекомендуется использовать цифровой прибор заводского исполнения.

Такой прибор можно также положить в бардачок автомобиля. В поездке он может пригодиться для отыскания повреждений электропроводки, не годных ламп, соответствия бортового напряжения автомобиля.

Литература: В.Г.Борисов. Радиотехнический кружок и его работа.

А.Зотов


П О П У Л Я Р Н О Е:

    Как проверить лампочку, выключатель, предохранитель…?

    Для проверки предохранителя, электрической лампочки накаливания, кипятильника, удлинителя и т.п. совсем необязательно покупать дорогой мультиметр. Можно самому за несколько минут собрать простейший пробник на одной батарейке.