Теория функциональных систем П.К. Анохина, ее значение для психофизиологии

Министерство высшего профессионального образования РФ

Российский Государственный Гуманитарный Университет

Институт Психологии

Сорокин Александр Алексеевич

I курс, 1 группа.

Реферат

“Основные понятия в теории функциональных систем”.

Москва,

1999 год.

Что есть функциональная система ?

В данной работе я должен по возможности ясно и коротко описать основные понятия теории П.К. Анохина о функциональных системах, как принципах жизнедеятельности. Поэтому прежде чем разбирать составляющие системы, надо осветить что есть она сама и для чего она функционирует.

Основные физиологические закономерности таких систем были сформулированы лабораторией Анохина ещё в 1935 году, т.е. задолго до того, как были опубликованы первые работы по кибернетике, однако смысл публикаций соответствовал тем принципам, которые Анохин выделил позже. По своей архитектуре функциональные системы целиком соответствуют любой кибернетической модели с обратной связью, и потому изучение свойств различных функциональных систем организма, сопоставление роли в них частных и общих закономерностей, несомненно, послужит познанию любых систем с автоматической регуляцией.

Под функциональной системой мы понимаем такое сочетание процессов и механизмов, которое формируясь динамически в зависимости от данной ситуации, непременно приводя к конечному приспособительному эффекту, полезному для организма как раз именно в этой ситуации . То есть в приведённой формулировке до нас хотят донести, что функциональная система может быть составлена из таких аппаратов и механизмов, которые могут быть весьма отдалёнными в анатомическом отношении. Получается, что состав функциональной системы (далее ФС) и направление её деятельности определяются не органом, ни анатомической близостью компонентов а динамикой объединения, диктуемой только качеством конечного приспособленного эффекта.

В некоторых случаях формирование саморегулирующихся систем получило название “биологического регулирования ( Wagner, 1958) , но только когда саморегуляция рассматривалась в отношении живых существ. Однако независимо от наименования, для того, чтобы приобрести приспособленный смысл для организма, эти различные формы объединения во всех случаях должны обладать всеми теми свойствами, которые мы формулируем для ФС. Получается, что ФС не относится только к коре головного мозга или даже к целому головному мозгу. Она есть по самой своей сути центрально - периферическое образование, в котором импульсы циркулируют как от центра к периферии, так и от периферии к центру (обратная афферентация ), что создаёт непрерывную информацию центральной нервной системы о достигнутых на периферии результатах.

Необходимо так же охарактеризовать основу или “жизненный узел” всякой ФС – чрезвычайно прочно увязанную функциональную пару – конечный эффект системы и аппарат оценки достаточности или недостаточности этого эффекта при помощи специальных рецепторных образований. Как правило, конечный приспособительный эффект служит основным задачам выживания организма и в той или иной степени жизненно необходим. Это положение абсолютно верно, когда речь идёт о жизненно важных функциях, как то: дыхание, осмотическое давление крови, уровень кровяного давления, концентрация сахара в крови и др. Здесь ФС представляет собой разветвлённую физиологическую организацию, составляющую конкретный физиологический аппарат , служащий поддержанию жизненно важных констант организма (гомеостазис) т.е. осуществление процесса саморегуляции. Когда речь идёт о ФС, то это относится не только к системам с константными конечными, которые располагают большею частью врождёнными механизмами.

Основное отличие в построении и организации данного вида системы, формирование её экстремально или на основе условного рефлекса. Однако, несмотря на столь разные качественные различия, все ФС имеют те же архитектурные особенности, а доказательство этого то, что “ФС действительно является универсальным принципом организации процессов и механизмов, заканчивающихся получением конечного приспособительного эффекта ”. Общепринято ФС рассматривается как единица интегративной деятельности человека.

С помощью экспериментов П.К. Анохин сформулировал основные постулаты в общей теории ФС.

Постулат первый

Ведущим системообразующим фактором ФС любого уровня организации является полезный для жизнедеятельности организма, приспособительный результат.

Постулат второй

Любая функциональная система организма строится на основе принципа саморегуляции: отклонение результата от уровня, обеспечивающего нормальную жизнедеятельность, посредством деятельности соответствующей функциональной системы само является причиной восстановления оптимального уровня этого результата.

Постулат третий

Функциональные системы являются центрально - периферическими образованиями, избирательно объединяющими различные органы и ткани для достижения полезных для организма приспособительных результатов.

Постулат четвёртый

Функциональные системы различного уровня характеризуются изоморфной организацией: они имеют однотипную архитектонику.

Постулат пятый

Отдельные элементы в функциональных системах взаимодействуют достижению их полезных для организма результатов.

Постулат шестой

Функциональные системы и их отдельные части избирательно созревают в процессе онтогенеза, отражая тем самым общие закономерности системогенеза.

Теперь мы знаем, что ФС – это организация активных элементов во взаимосвязи, которое направлено на достижение полезного приспособительного результата. Надо полагать, что настала пора разобрать понятия, которые включены в систему, потому что в этом и заключается основная тема.

Основные понятия в теории ФС.

По разным источникам можно по-разному выделить и основные понятия в ФС. Для начала приведём классическую схему самой системы, а затем разберём её отдельные понятия.



1) Пусковой стимул (иначе раздражение).

2) Обстановочные афферентации.

3) Память.

4) Доминирующая мотивация.

5) Афферентный синтез.

6) Принятие решения.

7) Акцептор результата действия.

8) Программа действия.

9) Эфферентные возбуждения.

10) Действие.

11) Результат действия.

12) Параметры результата

13) Обратная афферентация.

Если мною ничего не забыто, то именно в такой компоновке и работает система. Только во многих работах даже не встречается упоминание о таких частях системы как: установочная афферентация, пусковой стимул. Это заменено одной единственной фразой – афферентный синтез. Он составляет начальную стадию поведенческого акта любой степени сложности, а следовательно и начало работы ФС составляет он же. Важность же афферентного синтеза состоит в том, что он определяет всё последующее поведение организма. Основная задача этой стадии состоит в том, чтобы собрать необходимую информацию о различных параметрах внешней среды. Благодаря ему из множества внешних и внутренних раздражителей организм отбирает главные и создаёт цель поведения (надо полагать здесь параллельно действует механизм доминирующей мотивации) . Считаю, что доминирующая мотивация – это действия в данный момент, направленные на решение, удовлетворение какой-либо нужды, необходимости, желания, которые преобладают над всеми другими побуждениями. Поскольку на выбор такой информации оказывает влияние как цель поведения, так и предыдущий опыт жизнедеятельности, то афферентный синтез всегда индивидуален. Я уже упомянул, что стадия афферентного синтеза включает в себя не один компонент. Согласно данным установочной афферентации и при содействии доминирующей мотивации, базируясь на опыте заложенном в памяти, формируется решение о том что делать. Происходит это в блоке принятия решения. Если к этому блоку доходят сразу несколько пусковых стимулов, то должно сформироваться решение о доминирующем направлении действий (но иногда и о доминирующих, т.е. нескольких) и запуске его в программу выполнения, остальные же должны отсеится и распасться как более не функциональные. Происходит переход к формированию программы действий, которая обеспечивает последующую реализацию одного действия из множества потенциально возможных. Копия выбранного решения передаётся в блок акцептора результата действий, а основная информация поступает в блок эфферентного синтеза. Команда, представленная комплексом эфферентных возбуждений, направляется к периферическим исполнительным органам и воплощается в соответствующее действие. В этом блоке уже содержится некий набор стандартных программ, отработанных в ходе индивидуального и видового опыта для получения положительных результатов. Задача блока на данный момент определить и “подключить” наиболее адекватную программу. Важной чертой ФС являются её индивидуальные и меняющиеся требования к афферентации. Именно количество и качество афферентных импульсаций характеризует степень сложности, произвольности или автоматизированности функциональной системы.

Задачи намеченные к выполнению в блоке принятия решения и запущенные в осуществление и следует называть программой. Чего ради создаётся программа? Ответ уже был дан выше, для того же ради чего существует система – для достижения конечной цели. Это практическая часть системы в отличие от стратегического афферентного синтеза. Но программа по каким-либо внешним воздействиям может не выполнить поставленной цели. Что же из-за этого разрушать всю систему и формировать новую? Это бы было не функционально, обеспечивало бы плохую приспособляемость и требывало бы больше времени. Система не действует по такому пути, уже при исполнении программы в работу вступает акцептор полученного результата. В нём всегда хранится копия полученного ранее решения. Он является необходимой частью ФС – это центральный аппарат оценки результатов и параметров ещё не совершившегося действия. Допустим что должно быть осуществлено некое поведенческое действие, а уже до его осуществления смоделировано представление о нём или образ ожидаемого результата. В процессе реального действия от акцептора идут эфферентные сигналы к нервным моторным структурам, обеспечивающим достижение необходимой цели. Если допустить что из-за каких-то воздействий установочной афферентации поставлена под угрозу жизнь всей системы, то акцептор корректирует программу прямо по ходу её выполнения, причём адекватно с изменениями. А об успешности \ неуспешности поведенческого акта сигнализирует поступающая в мозг афферентная импульсация от всех рецепторов, которые регистрируют последовательные этапы выполнения конкретного действия (обратная афферентация). Оценка поведенческого акта как в целом, так и в деталях невозможна без такой точной информации о результатах каждого из действий. Чтобы гарантировать реализацию любого поведенческого акта необходимо наличие именно этого механизма. Более того, скорее всего организм погиб бы в первые же часы из-за неадекватности действий, если бы подобного механизма не существовало.

ФС – морфо-физиологическая основа ВПФ как совокупность всех процессов, протекающих в различных системах, обеспечивающих функционирование ВПФ (афферентные и эфферентные составляющие).

Изучая физиологическую структуру поведенческого акта, П.К. Анохин пришел к выводу о необходимости различать частные механизмы интеграции, когда эти частные механизмы вступают между собой в сложное координированное взаимодействие. Основные положения теории функциональной системы были сформулированы П. К. Анохиным еще в 1935 г. Теория функциональных систем, предложенная П.К.Анохиным, постулирует принципиально новый подход к физиологическим явлениям. Она изменяет традиционное "органное" мышление и открывает картину целостных интегративных функций организма. Возникнув на основе теории условных рефлексов И.П.Павлова, теория функциональных систем явилась ее творческим развитием. Вместе с тем в процессе развития самой теории функциональных систем она вышла за рамки классической рефлекторной теории и оформилась в самостоятельный принцип организации физиологических функций. Функциональные системы имеют отличную от рефлекторной дуги циклическую динамическую организацию, вся деятельность составляющих компонентов которой направлена на обеспечение различных приспособительных результатов, полезных для организма и для его взаимодействия с окружающей средой и себе подобными.

Наиболее принципиальным положением теории является то, что системы могут быть самыми разнообразными по типу задач, ими решаемых, и по сложности этих задач, но архитектура систем при этом остается одной и той же. Это означает, что различные функциональные системы - от системы терморегуляции до системы по­литического управления - имеют сходную структуру. Основными компонентами любых функциональных систем являются следующие:

Афферентный синтез;

Принятие решения;

Модель результатов действия (акцептор действия) и программа действия;

Действие и его результат;

Обратная связь.

Афферентный синтез представляет собой обобщение потоков информации, приходящей как снаружи, так и извне. Субкомпонентами афферентного синтеза являются доминирующая мотивация, обстано­вочная афферентация, пусковая афферентация и память. Функция доминирующей мотивации - обеспечение общей мотивационной активации. «Первопричиной» лю­бого действия является потребность, мотивация. Переевшее животное не будет лихо­радочно искать пищу, человек, лишенный честолюбия, мало озабочен стремлением к продвижению по служебной лестнице. Функция обстановочной афферентации - обеспечение общей готовности к действию. Как только в среде появляется то, что спо­собно удовлетворить нашу потребность, включается механизм пусковой афферента­ции. Пусковая афферентация инициирует поведение. Таким образом, на основе взаимодействия мотивационного, обстановочного возбуждения и механизмов памяти формируется так называемая интеграция или готовность к определенному поведению. Но, чтобы она трансформировалась в целенаправленное поведение, необходимо воздействие со стороны пусковых раздражителей. Пусковая афферентация – последний компонент афферентного синтеза.

Процессы афферентного синтеза, охватывающие мотивационное возбуждение, пусковую и обстановочную афферентацию, аппарат памяти, реализуются с помощью специального модуляционного механизма, обеспечивающего необходимый для этого тонус коры больших полушарий и других структур мозга. Этот механизм регулирует и распределяет активирующие и инактивирующие влияния, исходящие из лимбической и ретикулярной систем мозга. Поведенческим выражением роста уровня активации в центральной нервной системе, создаваемым этим механизмом, является появление ориентировочно-исследовательских реакций и поисковой активности животного.

Завершение стадии афферентного синтеза сопровождается переходом в стадию принятия решения, которая и определяет тип и направленность поведения. Стадия принятия решения реализуется через специальную и очень важную стадию поведенческого акта – формирование аппарата акцептора результатов действия. Это аппарат, программирующий результаты будущих событий. В нем актуализирована врожденная и индивидуальная память животного и человека в отношении свойств внешних объектов, способных удовлетворить возникшую потребность, а также способов действия, направленных на достижение или избегание целевого объекта. Нередко в этом аппарате запрограммирован весь путь поиска во внешней среде соответствующих раздражителей. Предполагается, что акцептор результатов действия представлен сетью вставочных нейронов, охваченных кольцевым взаимодействием. Возбуждение, попав в эту сеть, длительное время продолжает в ней циркулировать. Благодаря этому механизму и достигается продолжительное удержание цели как основного регулятора поведения.

Следующая стадия – это само выполнение программы поведения. Эфферентное возбуждение достигает исполнительных механизмов, и действие осуществляется.

Благодаря аппарату акцептора результатов действия, в котором программируется цель и способы поведения, организм имеет возможность сравнивать их с поступающей афферентной информацией о результатах и параметрах совершаемого действия, т.е. с обратной афферентацией. Именно результаты сравнения определяют последующее построение поведения, либо оно корректируется, либо оно прекращается как в случае достижения конечного результата.

Следовательно, если сигнализация о совершенном действии полностью соответствует заготовленной информации, содержащейся в акцепторе действия, то поисковое поведение завершается. Соответствующая потребность удовлетворяется.

  • < Назад
  • Вперёд >

Функциональная система П.К. Анохина - это схематичная модель основных блоков мозга, обеспечивающих целенаправленное поведение, т.е. поведение, направленное на достижение определённой цели. Она отражает более сложный нервный механизм, обеспечивающий поведение, по сравнению с рефлекторными дугами.

Функциональная система П.К. Анохина

Для того чтобы легче было запомнить эту схему, я её несколько модифицировал по сравнению с той схемой, которая даётся в учебниках по физиологии.

Итак, запоминаем функциональную систему П.К. Анохина:

  • три входа
  • три блока
  • три этажа в каждом блоки
  • три явления на выходе
  • три нововведения (АРД, обратная афферентация, параметры результата).

Внутренняя афферентация

Потребность, т.е. недостаток чего-то в организме, порождает внутреннюю афферентацию.

Внутренняя афферентация - это сенсорный (афферентный) поток импульсов от интерорецепторов, расположенных во внутренних органах, мышцах, кровеносных сосудах. Интерорецепторы (или интероцепторы) реагируют на изменения во внутренней среде организма.

В блоке мотивации во главе с миндалиной мозга из множества текущих потребностей выбирается только одна наиболее биологически значимая потребность. На её основе формируется поток мотивационного возбуждения.

Добавим к схеме П.К. Анохина представления Ю. Конорского о драйв-рефлексах. Тогда получится, что поток мотивационного возбуждения передается в систему драйв-рефлексов. Драйв - это подготовительное поведение для повышения вероятности исполнительного рефлекса.
В результате драйва организм оказывается в таком месте, или создаёт такую ситуацию, где повышена вероятность нахождения пускового раздражителя и реализации исполнительного поведения, которое даёт желаемый результат и удовлетворяет потребность.

Акцептор результата действия (АРД) = планировщик, активатор, компаратор (сравнитель) и завершатель.

  • Планирует ожидаемый результат, точнее - его воспринимаемые параметры.
  • Активирует программу действий для достижения этого результата.
  • Сравнивает полученные параметры с ожидаемыми.
  • Завершает деятельность функциональной системы при совпадении полученных параметров результата с ожидаемыми.

1 . Поведенческий акт любой степени сложности начинается со стадии афферентного синтеза .
Возбуждение, вызванное внешним стимулом, действует не изолированно. Оно непременно вступает во взаимодействие с другими афферентными возбуждениями, имеющими иной функциональный смысл. Головной мозг непрерывно обрабатывает все сигналы, поступающие по многочисленным сенсорным каналам. И только в результате синтеза этих афферентных возбуждений создаются условия для реализации определенного целенаправленного поведения. Содержание афферентного синтеза определяется влиянием нескольких факторов: мотивационного возбуждения, памяти, обстановочной и пусковой афферентации.

Мотивационное возбуждение появляется в центральной нервной системе в следствии той или другой витальной, социальной или идеальной потребности. Специфика мотивационного возбуждения определяется особенностями, типом вызвавшей его потребности. Оно – необходимый компонент любого поведения. Важность мотивационного возбуждения для афферентного синтеза вытекает уже из того, что условный сигнал теряет способность вызывать ранее выработанное пищедобывательное поведение (например, побежку собаки к кормушке для получения пищи), если животное уже хорошо накормлено и, следовательно, у него отсутствует мотивационное пищевое возбуждение.

Роль мотивационного возбуждения в формировании афферентного синтеза определяется тем, что любая поступающая информация соотносится с доминирующим в данный момент мотивационным возбуждением , которое действует как фильтр, отбирающий наиболее нужное для данной мотивационной установки. Доминирующая мотивация как первичный системообразующий фактор определяет все последующие этапы мозговой деятельности по формированию поведенческих программ. Специфика мотиваций определяет характер и «химический статус» внутрицентральной интеграции и набор вовлекаемых мозговых аппаратов. В качестве полезного результата определенного поведенческого акта выступает удовлетворение потребности, т.е. снижение уровня мотивации .

Нейрофизиологической основой мотивационного возбуждения является избирательная активация различных нервных структур , создаваемая прежде всего лимбической и ретикулярной системами мозга. На уровне коры мотивационное возбуждение представлено специфическим паттерном возбуждения.

Хотя мотивационное возбуждение является очень важным компонентом афферентного синтеза, оно не единственной его компонент. Внешние стимулы с их разным функциональным смыслом по отношению к данному, конкретному организму также вносят свой вклад в афферентный синтез. Выделяют два класса стимулов с функциями пусковой и обстановочной афферентации.

Условные и безусловные раздражители, ключевые стимулы (вид ястреба – хищника для птиц, вызывающего поведение бегства, и др.) служат толчком к развертыванию определенного поведения или отдельного поведенческого акта. Этим стимулам присуща пусковая функция. Картина возбуждения, создаваемая биологически значимыми стимулами в сенсорных системах, и есть пусковая афферентация. Однако способность пусковых стимулов инициировать поведение не является абсолютной. Она зависит от той обстановки и условий, в которых они действуют.

Зависимость формирования условного рефлекса от обстановки опыта была описана уже И.П. Павловым. Неожиданное изменение обстановки может разрушать ранее выработанный уловный рефлекс. Однако обстановочная афферентация , хотя и влияет на появление и интенсивность условнорефлекторной реакции, сама неспособна вызывать эти реакции.

Влияние обстановочной афферентации на условный рефлекс наиболее отчетливо выступило при изучении явления динамического стереотипа. В этих опытах животное тренировали для выполнения в определенном порядке серии различных условных рефлексов. После длительной тренировки оказалось, что любой случайный условный раздражитель может воспроизвести все специфические эффекты, характерные для каждого раздражителя в системе двигательного стереотипа. Для этого лишь необходимо, чтобы он следовал в заученной временной последовательности. Таким образом, решающее значение при вызове условных рефлексов в системе динамического стереотипа приобретает порядок их выполнения. Следовательно, обстановочная афферентация включает не только возбуждение от стационарной обстановки, но и ту последовательность афферентных возбуждений, которая ассоциируется с этой обстановкой . Обстановочная афферентация создает скрытое возбуждение, которое может быть выявлено, как только подействует пусковой раздражитель. Физиологический смысл пусковой афферентации состоит в том, что, выявляя скрытое возбуждение, создаваемое обстановочной афферентацией, она приурочивает его к определенным моментам времени, наиболее целесообразным с точки зрения самого поведения.

Решающее влияние обстановочной афферентации на условнорефлекторный ответ было показано в опытах И.И. Лаптева – сотрудника П.К. Анохина. В его экспериментах звонок утром подкреплялся едой, и тот же звонок вечером сопровождался ударом электрического тока. В результате было выработано два разных условных рефлекса: утром – слюноотделительная реакция, вечером - оборонительный рефлекс. Животное научилось дифференцировать два комплекса раздражителей, различающихся только временным компонентом.

Афферентный синтез включает также использование аппарата памяти. Очевидно, что функциональная роль пусковых и обстановочных раздражений в известной мере уже обусловлена прошлым опытом животного. Это и видовая память, и индивидуальная, приобретенная в результате обучения. На стадии афферентного синтеза из памяти извлекаются и используются именно те фрагменты прошлого опыта, которые полезны, нужны для будущего поведения.

Таким образом, на основе взаимодействия мотивационного, обстановочного возбуждения и механизмов памяти формируется так называемая интеграция или готовность к определенному поведению. Но, чтобы она трансформировалась в целенаправленное поведение, необходимо воздействие со стороны пусковых раздражителей.
Пусковая афферентация – последний компонент афферентного синтеза.

Процессы афферентного синтеза, охватывающие мотивационное возбуждение, пусковую и обстановочную афферентацию, аппарат памяти, реализуются с помощью специального модуляционного механизма, обеспечивающего необходимый для этого тонус коры больших полушарий и других структур мозга. Этот механизм регулирует и распределяет активирующие и инактивирующие влияния, исходящие из лимбической и ретикулярной систем мозга. Поведенческим выражением роста уровня активации в центральной нервной системе, создаваемым этим механизмом, является появление ориентировочно-исследовательских реакций и поисковой активности животного.

2. Завершение стадии афферентного синтеза сопровождается переходом в стадию принятия решения, которая и определяет тип и направленность поведения. Стадия принятия решения реализуется через специальную и очень важную стадию поведенческого акта – формирование аппарата акцептора результатов действия . Это аппарат, программирующий результаты будущих событий. В нем актуализирована врожденная и индивидуальная память животного и человека в отношении свойств внешних объектов, способных удовлетворить возникшую потребность, а также способов действия, направленных на достижение или избегание целевого объекта. Нередко в этом аппарате запрограммирован весь путь поиска во внешней среде соответствующих раздражителей .

Предполагается, что акцептор результатов действия представлен сетью вставочных нейронов, охваченных кольцевым взаимодействием. Возбуждение, попав в эту сеть, длительное время продолжает в ней циркулировать. Благодаря этому механизму и достигается продолжительное удержание цели как основного регулятора поведения.

До того как целенаправленное поведение начнет осуществляться, развивается еще одна стадия поведенческого акта – стадия программы действия или эфферентного синтеза. На этой стадии осуществляется интеграция соматических и вегетативных возбуждений в целостный поведенческий акт. Эта стадия характеризуется тем, что действие уже сформировано, но внешне оно еще не реализуется.

3. Следующая стадия – это само выполнение программы поведения. Эфферентное возбуждение достигает исполнительных механизмов, и действие осуществляется.

Благодаря аппарату акцептора результатов действия, в котором программируется цель и способы поведения, организм имеет возможность сравнивать их с поступающей афферентной информацией о результатах и параметрах совершаемого действия, т.е. с обратной афферентацией . Именно результаты сравнения определяют последующее построение поведения, либо оно корректируется, либо оно прекращается как в случае достижения конечного результата.
Следовательно, если сигнализация о совершенном действии полностью соответствует заготовленной информации, содержащейся в акцепторе действия, то поисковое поведение завершается. Соответствующая потребность удовлетворяется. И животное успокаивается. В случае, когда результаты действия не совпадают с акцептором действия и возникает их рассогласование, появляется ориентировочно-исследовательская деятельность. В результате этого заново перестраивается афферентный синтез, принимается новое решение, создается новый акцептор результатов действия и строится новая программа действий. Это происходит до тех пор, пока результаты поведения не станут соответствовать свойствам нового акцептора действия. И тогда поведенческий акт завершается последней санкционирующей стадией – удовлетворением потребности.

Таким образом, в концепции функциональной системы наиболее важным ключевым этапом, определяющим развитие поведения, является выделение цели поведения. Она представлена аппаратом акцептора результатов действия, который содержит два типа образов , регулирующих поведение, - сами цели и способы их достижения. Выделение цели связывается с операцией принятия решения как заключительного этапа афферентного синтеза. В чем суть механизма, который приводит к принятию решения, в результате которого и формируется цель?

Исследователи выделяют две группы эмоциональных явлений.
1. Первая группа – это ведущие эмоции . Их возникновение связано с появлением или усилением потребностей. Так, возникновение той или другой биологической потребности, прежде всего отражается в появлении отрицательных эмоциональных переживаний, выражающих биологическую значимость тех изменений, которые развиваются во внутренней среде организма. Качество и специфика ведущего эмоционального переживания тесно увязаны с типом и особенностями породившей его потребности.
2. Вторая группа эмоциональных переживаний – ситуативные эмоции .
Они возникают в процессе действий, совершаемых в отношении цели, и являются следствием сравнения реальных результатов с ожидаемыми. В структуре поведенческого акта, по П.К. Анохину, эти переживания возникают в результате сопоставления обратной афферентации с акцептором результатов действия. В случаях рассогласования возникают эмоциональные переживания с отрицательным знаком. При совпадении параметров результатов действия с ожидаемыми эмоциональные переживания носят положительный характер.

Наиболее прямое отношение к формированию цели поведения имеют ведущие эмоции. Это касается как отрицательных, так и положительных эмоциональных переживаний. Ведущие эмоции с отрицательным знаком сигнализируют субъекту о биологической значимости тех отклонений, которые совершаются в его внутренней среде. Они и определяют зону поиска целевых объектов, так как эмоциональные переживания, порожденные потребностью, направлены на те предметы, которые способны ее удовлетворить. Например, в ситуации длительного голодания переживание голода проецируется на пищу. В результате этого меняется отношение животного к пищевым объектам. Оно эмоционально, с жадностью набрасывается на еду, тогда как сытое животное может проявить полное равнодушие к пище.

Целенаправленное поведение – поиск целевого объекта, удовлетворяющего потребность, - побуждается не только отрицательными эмоциональными переживаниями. Побудительной силой обладают и представления о тех положительных эмоциях, которые в результате индивидуального прошлого опыта связаны в памяти животного и человека с получением будущего положительного подкрепления или награды, удовлетворяющего данную конкретную потребность. Положительные эмоции фиксируются в памяти и впоследствии возникают всякий раз как своеобразное представление о будущем результате при возникновении соответствующей потребности.

Таким образом, в структуре поведенческого акта формирование акцептора результатов действия опосредовано содержанием эмоциональных переживаний. Ведущие эмоции выделяют цель поведения и тем самым инициируют поведение, определяя его вектор. Ситуативные эмоции, возникающие в результате оценок отдельных этапов или поведения в целом, побуждают субъект действовать либо в прежнем направлении, либо менять поведение, его тактику, способы достижения цели.

Согласно теории функциональной системы, хотя поведение и строится на рефлекторном принципе, но оно не может быть определено как последовательность или цепь рефлексов. Поведение отличается от совокупности рефлексов наличием особой структуры, включающей в качестве обязательного элемента программирование, которое выполняет функцию опережающего отражения действительности . Постоянное сравнение результатов поведения с этими программирующими механизмами, обновление содержания самого программирования и обусловливают целенаправленность поведения .

Таким образом, в рассмотренной структуре поведенческого акта отчетливо представлены главные характеристики поведения: его целенаправленность и активная роль субъекта в процессе построения поведения.Специалисты вычерчивают карту мозга

Литература
Анохин П.К. Биология и нейрофизиология условного рефлекса. М., 1968.
Данилова Н.Н. Функциональные состояния: механизмы и диагностика. М., 1985.
Данилова Н.Н., Крылова А.Л. Физиология высшей нервной деятельности. М., 1997.
Данилова Н.Н. Психофизиология. М., 1998.
Судаков К.В. Системная организация целостного поведенческого акта // Физиология поведения. Л., 1987.
Судаков К.В. Общие принципы построения поведенческих актов на основе теории функциональных систем // Системные механизмы поведения / Под ред. К.В. Судакова, М. Баича. М., 1990.
Судаков К.В. Общие закономерности системогенеза // Теория системогенеза / Под ред. К.В. Судакова. М., 1997.
Mogenson G.J., Jones D.L., Jim C.J. From motivation to action functional interface between the limbic system and the motor system // Progress in Neurobiology. 1980. Vol. 14.

Множество исследований в области искусственного интеллекта сталкиваются с проблемой отсутствия на сегодняшний момент какой-либо мощной теории сознания и мозговой активности. Фактически мы обладаем достаточно скудными знаниями о том каким образом мозг обучается и достигает адаптивного результата. Однако, на данный момент происходит заметное увеличение взаимовлияния области искусственного интеллекта и нейробиологии. По результатам математического моделирования мозговой активности ставятся новые цели для экспериментов в области нейробиологии и психофизиологии, а экспериментальные данные биологов в свою очередь во многом влияют на вектор развития ИИ.

Исходя из вышесказанного становится ясно, что для будущего успешного развития бионического ИИ необходимо плотное сотрудничество математиков и нейробиологов, которое в итоге будет плодотворным для обеих областей. Для этого в частности необходимо изучение современных успехов теоретической нейробиологии.

На данный момент существуют три наиболее проработанных и отчасти экспериментально проверенных теории строения сознания в области теоретической нейробиологии: теория функциональных систем П.К. Анохина, теория селекции нейрональных групп (нейродарвинизм) Джеральда Эдельмана и теория глобальных информационных пространств Жана-Пьера Шанже (изначально сформулирована Бернардом Баарсом). Остальные теории либо являются модификациями названных, либо не подтверждены никакими экспериментальными данными. В данной статье речь пойдет о первой из этих теорий - Теории функциональных систем П.К. Анохина .

Парадигмы реактивности и активности

В первую очередь необходимо сказать о том, что при всем многообразии теорий и подходов, используемых в психологии, психофизиологии и нейронауках, их можно условно разделить на две группы. В первой группе в качестве основного методологического принципа, определяющего подход к исследованию закономерностей мозговой организации поведения и деятельности, рассматривается реактивность, во второй - активность (рис. 1).

Рис. 1. Две парадигмы нейрофизиологии - реактивность и активность

В соответствии с парадигмой реактивности за стимулом следует реакция – поведенческая у индивида, импульсная у нейрона. В последнем случае в качестве стимула рассматривается импульсация пресинаптического нейрона.

В соответствии с парадигмой активности действие завершается достижением результата и его оценкой. В схему включается модель будущего результата: для человека, например, контакт с объектом-целью .

Согласно реактивностному подходу, агент не должен проявлять активность в отсутствии стимулов. Напротив, при использовании парадигмы активности мы можем допустить случай, когда агенту не поступило никакого стимула из внешней среды, однако, согласно ожиданиям агента он должен был поступить. В этом случае агент будет действовать и обучаться для устранения рассогласования, чего не может бы быть в случае простейшего безусловного ответа агента на стимул из внешней среды.

Теория функциональных систем

В теории функциональных систем в качестве детерминанты поведения рассматривается не прошлое по отношению к поведению событие - стимул, а будущее – результат . Функциональная система есть динамически складывающаяся широкая распределенная система из разнородных физиологических образований, все части которой содействуют получению определенного полезного результата . Именно опережающее значение результата и модель будущего, создаваемая мозгом, позволяет говорить не о реакции на стимулы из внешней среды, а о полноценном целеполагании.


Рис. 2. Общая архитектура функциональной системы
(ОА – обстановочная афферентация, ПА – пусковая афферентация)

Архитектура функциональной системы приведена на рис. 2. На схеме представлена последовательность действий при реализации одной функциональной системы. Вначале происходит афферентный синтез, который аккумулирует сигналы из внешней среды, память и мотивацию субъекта. На основе афферентного синтеза принимается решение, на основе которого формируется программа действий и акцептор результата действия – прогноз результативности совершаемого действия. После чего непосредственно совершается действие и снимаются физические параметры результата. Одной из самых важных частей данной архитектуры является обратная афферентация – обратная связь, которая позволяет судить об успешности того или много действия. Это непосредственно позволяет субъекту обучаться, так как сравнивая физические параметры полученного результата и предсказанного результата, можно оценивать результативность целенаправленного поведения. Причем небходимо отметить, что на выбор того или иного действия влияет очень много факторов, совокупность которых обрабатывается в процессе афферентного синтеза.

Такие функциональные системы вырабатываются в процессе эволюции и обучения в течение жизни . Если обобщать, то вся цель эволюции – это выработка функциональных систем, которые будут давать наилучший приспособительный эффект. Функциональные системы, вырабатываемые эволюцией, развиваются еще до рождения, когда нету прямого соприкосновения со средой, и обеспечивают первичный репертуар. Именно этот факт указывает на эволюционную природу этих явлений. Такие процессы получили общее названиепервичный системогенез .

Системно-эволюционная теория, разработанная Швырковым В.Б. на основе теории функциональных систем, отвергала даже понятие «пускового стимула» и рассматривала поведенческий акт не изолировано, а как компоненту поведенческого континуума: последовательности поведенческих актов, совершаемых индивидом на протяжении его жизни (рис. 3) . Следующий акт в континууме реализуется после достижения и оценки результата предыдущего акта. Такая оценка – необходимая часть процессов организации следующего акта, которые, таким образом, могут быть рассмотрены как трансформационные или процессы перехода от одного акта к другому .


Рис. 3. Поведенчески-временной континуум

Из всего вышесказанного следует, что индивид, и даже отдельный нейрон, должны обладать способностью вырабатывать образ результата действия и возможностью оценивать результативность своего поведения. При выполнении этих условий поведение можно с уверенностью называть целенаправленным.

Однако, процессы системогенеза происходят в мозге не только в развитии (первичный системогенез), но и в течение жизни субъекта. Системогенез – это образование новых систем в процессе обучения. В рамках системно-селекционной концепции научения - формирование новой системы - рассматривается как формирование нового элемента индивидуального опыта в процессе научения. В основе формирования новых функциональных систем при научении лежит селекция нейронов из «резерва» (предположительно низко активных или «молчащих» клеток). Эти нейроны могут быть обозначены как преспециализированные клетки .

Селекция нейронов зависит от их индивидуальных свойств, т.е. от особенностей их метаболических «потребностей». Отобранные клетки становятся специализированными относительно вновь формируемой системы – системно-специализированными. Эта специализация нейронов относительно вновь формируемых систем постоянна. Таким образом, новая система оказывается «добавкой» к ранее сформированным, «наслаиваясь» на них. Этот процесс называется вторичным системогенезом .

Следующие положения системно-эволюционной теории:
о наличии в мозге животных разных видов большого числа «молчащих» клеток;
об увеличении количества активных клеток при обучении;
о том, что вновь сформированные специализации нейронов остаются постоянными
что при научении происходит скорее вовлечение новых нейронов, чем переобучение старых,
согласуются с данными, полученными в работах ряда лабораторий .

Отдельно хотелось бы отметить, что согласно современным представлениям психофизиологии и системно-эволюционной теории количество и состав функциональных систем индивида определяется как процессами эволюционной адаптации, которые отражаются в геноме, так и индивидуальным прижизненным обучением.

Теория функциональных систем успешно исследуется путем имитационного моделирования и на ее основе строятся различные модели управления адаптивным поведением .

Вместо заключения

Теория функциональных систем в свое время первой ввела понятие целенаправленности поведения за счет сравнения предсказания результата с фактическими его параметрами, а также обучение как способ устранения рассогласования организма со средой. Многие положения данной теории уже сейчас нуждаются в существенном пересмотре и адаптации с учетом новых экспериментальных данных. Однако на сегодняшний момент данная теория входит в число наиболее проработанных и биологически адекватных.

Хотелось бы еще раз отметить, что с моей точки зрения дальнейшее развития области ИИ невозможно без тесного сотрудничества с нейробиологами, без построения новых моделей на основе мощных теорий.

Список литературы

. Александров Ю.И. «Введение в системную психофизиологию». // Психология XXI века. М.: Пер Се, стр. 39-85 (2003).
. Александров Ю.И., Анохин К.В. и др. Нейрон. Обработка сигналов. Пластичность. Моделирование: Фундаментальное руководство. Тюмень: Издательство Тюменского Государственного Университета (2008).
. Анохин П.К. Очерки по физиологии функциональных систем. М.: Медицина (1975).
. Анохин П.К. «Идеи и факты в разработке теории функциональных систем». // Психологический журнал. Т.5, стр. 107-118 (1984).
. Анохин П.К. «Системогенез как общая закономерность эволюционного процесса». // Бюллетень экпериментальной биологии и медицины. № 8, т. 26 (1948).
. Швырков В.Б. Введение в объективную психологию. Нейрональные основы психики. М.: Институт психологии РАН (1995).
. Александров Ю.И. Психофизиология: Учебник для вузов. 2-е изд. Спб.: Питер (2003).
. Александров Ю.И. «Научение и память: системная перспектива». // Вторые симоновские чтения. М.: Изд. РАН, стр. 3-51 (2004).
. Теория системогенеза. Под. ред. К.В.Судакова. М.: Горизонт (1997).
. Jog M.S., Kubota K, Connolly C.I., Hillegaart V., Graybiel A.M. «Bulding neural representations of habits». // Science. Vol. 286, pp. 1745-1749 (1999).
. Red"ko V.G., Anokhin K.V., Burtsev M.S., Manolov A.I., Mosalov O.P., Nepomnyashchikh V.A., Prokhorov D.V. «Project «Animat Brain»: Designing the Animat Control System on the Basis of the Functional Systems Theory» // Anticipatory Behavior in Adaptive Learning Systems. LNAI 4520, pp. 94-107 (2007).
. Red"ko V.G., Prokhorov D.V., Burtsev M.S. «Theory of Functional Systems, Adaptive Critics and Neural Networks» // Proceedings of IJCNN 2004. Pp. 1787-1792 (2004).