Вечны ли звезды. Звёзды малой массы

Наше Солнце светит уже более 4,5 млрд. лет. При этом оно постоянно расходует водород. Абсолютно ясно, что как бы не велики были его запасы, но когда-то они будут исчерпаны. И что же произойдёт со светилом? На этот вопрос есть ответ. Жизненный цикл звезды можно изучить по другим аналогичным космическим образованиям. Ведь в космосе существуют настоящие патриархи, возраст которых составляет 9-10 млрд. лет. А есть совсем юные звёздочки. Им от роду не более нескольких десятков млн. лет.

Следовательно, наблюдая за состояние различных звёзд, которыми "усыпана" Вселенная, можно понять, как они себя ведут с течением времени. Здесь можно провести аналогию с наблюдателем-инопланетянином. Он прилетел на Землю и стал изучать людей: детей, взрослых, стариков. Таким образом, за совсем короткий период времени он понял, какие изменения происходят с людьми в течение жизни.

В настоящее время Солнце является жёлтым карликом - 1
Пройдут миллиарды лет, и оно станет красным гигантом - 2
А затем превратится в белого карлика - 3

Поэтому можно со всей уверенностью сказать, что когда запасы водорода в центральной части Солнца будут исчерпаны, термоядерная реакция не прекратится . Зона, где будет продолжаться этот процесс, начнёт сдвигаться к поверхности нашего светила. Но при этом силы гравитации уже не смогут влиять на давление, которое образуется в результате термоядерной реакции.

Как следствие, звезда начнёт разрастаться в размерах и постепенно превратится в красного гиганта . Это космический объект поздней стадии эволюции. Но таковым же он бывает и на ранней стадии во время звёздообразования. Только во втором случае красный гигант сжимается и превращается в звезду главной последовательности . То есть в такую, в которой идёт реакция синтеза гелия из водорода. Одним словом, с чего жизненный цикл звезды начинается, тем и заканчивается.

Наше Солнце увеличится в размерах настолько, что поглотит ближайшие планеты. Это Меркурий , Венера и Земля . Но не надо пугаться. Умирать светило начнёт через несколько млрд. лет. За это время сменятся десятки, а может и сотни цивилизаций. Человек ещё не раз возьмёт в руки дубину, а по прошествию тысячелетий опять сядет за компьютер. Это обычная цикличность, на которой базируется вся Вселенная.

Но превращение в красного гиганта ещё не означает конец. Термоядерная реакция будет отбрасывать в космос внешнюю оболочку. А в центре будет оставаться лишённое энергии гелиевое ядро. Под действием сил тяготения оно будет сжиматься и, в конце концов, превратится в чрезвычайно плотное с большой массой космическое образование. Такие остатки потухших и медленно остывающих звёзд называются белыми карликами .

У нашего белого карлика радиус будет в 100 раз меньше радиуса Солнца, а светимость уменьшится в 10 тыс. раз. При этом масса будет сравнимой с нынешней солнечной, а плотность будет больше в миллион раз. Таких белых карликов в нашей Галактике очень много. Их численность составляет 10% от общего числа звёзд.

Надо отметить, что белые карлики бывают водородными и гелиевыми. Но мы не будем лезть в дебри, а только заметим, что при сильном сжатии может наступить гравитационный коллапс. А это чревато колоссальным взрывом. При этом наблюдается вспышка сверхновой звезды. Термин "сверхновый" характеризует не возраст, а яркость вспышки. Просто белого карлика долго не было видно в космической бездне, и вдруг появилось яркое свечение.

Большая часть взорвавшейся сверхновой звезды разлетается в пространстве с огромной скоростью. А оставшаяся центральная часть сжимается в ещё более плотное образование и называется нейтронной звездой . Это конечный продукт звёздной эволюции. Его масса сравнима с солнечной, а радиус достигает всего лишь нескольких десятков км. Один куб. см нейтронной звезды может весить миллионы тонн. В космосе таких образований довольно много. Их количество примерно в тысячу раз меньше обычных солнц, которыми усыпано ночное небо Земли.

Надо сказать, что жизненный цикл звезды напрямую связан с её массой. Если она соответствует массе нашего Солнца или меньше её, то в конце жизни появляется белый карлик. Однако существуют светила, которые в десятки и сотни раз больше Солнца.

Когда такие гиганты сжимаются в процессе старения, то они так искажают пространство и время, что вместо белого карлика появляется чёрная дыра . Её гравитационное притяжение так велико, что его не могут преодолеть даже те объекты, которые движутся со скоростью света. Размеры дыры характеризует гравитационный радиус . Это радиус сферы, ограниченной горизонтом событий . Он представляет собой пространственно-временной предел. Любое космическое тело, преодолев его, исчезает навсегда и никогда не возвращается обратно.

О чёрных дырах существует много теорий. Все они базируются на теории гравитации, так как именно гравитация является одной из важнейших сил Вселенной. А основное её качество - универсальность . По-крайней мере, в наши дни не обнаружено ни одного космического объекта, у которого бы отсутствовало гравитационное взаимодействие.

Есть предположение, что через чёрную дыру можно попасть в параллельный мир. То есть это канал в другое измерение. Всё возможно, но любое утверждение требует практических доказательств. Однако пока ещё никто из смертных не смог осуществить подобный эксперимент.

Таким образом, жизненный цикл звезды состоит из нескольких стадий. В каждой из них светило выступает в определённом качестве, которое кардинально отличается от предыдущих и будущих. В этом и заключается неповторимость и таинственность космического пространства. Знакомясь с ним, невольно начинаешь думать, что человек тоже проходит несколько стадий в своём развитии. А та оболочка, в которой мы существуем сейчас, является лишь переходным этапом к какому-то иному состоянию. Но это умозаключение опять же требует практического подтверждения .

Эволюция звезд - изменение физ. характеристик, внутр. строения и хим. состава звезд со временем. Важнейшие задачи теории Э.з. - объяснение образования звезд, изменения их наблюдаемых характеристик, исследование генетической связи различных групп звезд, анализ их конечных состояний.

Поскольку в известной нам части Вселенной ок. 98-99% массы наблюдаемого вещества содержится в звездах или прошло стадию звезд, объяснение Э.з. явл. одной из наиболее важных проблем астрофизики.

Звезда в стаыционарном состоянии - это газовый шар, к-рый находится в гидростатич. и тепловом равновесии (т.е. действие сил тяготения уравновешино внутр. давлением, а потери энергии на излучение компенсируются энергией, выделяющейся в недрах звезды, см. ). "Рождение" звезды - это образование гидростатически равновесного объекта, излучение к-рого поддерживаются за счет собст. источников энергии. "Смерть" звезды - необратимое нарушение равновесия, ведущее к разрушению звезды или к ее катастрофич. сжатию.

Выделение гравитац. энергии может играть определяющую роль лишь тогда, когда темп-ра недр звезды недостаточна для того, чтобы ядерное энерговыделение могло компенсировать потери энергии, и звезда в целом или ее часть должна сжиматься для поддержания равновесия. Высвечивание тепловой энергии становится важным лишь после исчерпания запасов ядерной энергии. Т.о., Э.з. можно представить как последовательную смену источников энергии звезд.

Характерное время Э.з. слишком велико для того, чтобы можно было всю эволюцию проследить непосредственно. Поэтому осн. методом исследования Э.з. явл. построение последовательностей моделей звезд, описывающих изменения внутр. строения и хим. состава звезд со временем. Эволюц. последовательности затем сопоставляются с результатами наблюдений, напр., с (Г.-Р.д.), суммирующей наблюдения большого числа звезд, находящихся на разных стадиях эволюции. Особо важную роль играет сравнение с Г.-Р.д. для звездных скоплений, поскольку все звезды скопления имеют одинаковый начальный хим. состав и образовались практически одновременно. По Г.-Р.д. скоплений различного возраста удалось установить направление Э.з. Детально эволюц. последовательности рассчитываются путем численного решения системы дифференциальных уравнений, описывающих распределение массы, плотности, темп-ры и светимости по звезде, к к-рым добавляются , законы энерговыделения и непрозрачности звездного вещества и ур-ния, описывающие изменение хим. состава звезды со временем.

Ход эволюции звезды зависит в основном от ее массы и исходного хим. состава. Определенную, но не принципиальную роль могут играть вращение звезды и ее магн. поле, однако роль этих факторов в Э.з. еще недостаточно исследована. Хим. состав звезды зависит от времени, когда она образовалась, и от ее положения в Галактике в момент образования. Звезды первого поколения сформировались из вещества, состав к-рого определялся космологич. условиями. По=видимому, в нем было примерно 70% по массе водорода, 30% гелия и ничтожная примесь дейтерия и лития. В ходе эволюции звезд первого поколения образовались тяжелые элементы (следующие за гелием), к-рые были выброшены в межзвездное пространство в результате истечения вещества из звезд или при взрывах звезд. Звезды последующих поколений сформировались уже из вещества, содержавшего до 3-4% (по массе) тяжелых элементов.

Наиболее непосредственным указанием на то, что звездообразование в Галактике происходит и в настоящее время, явл. существование массивных ярких звезд спектр. классов O и B, время жизни к-рых не может превосходить ~ 10 7 лет. Скорость звездообразования в совр. эпоху оценивается в 5 в год.

2. Образование звезд, стадия гравитационного сжатия

Согласно наиболее распространенной точке зрения, звезды образуются в результате гравитац. конденсации вещества межзвездной среды. Необходимое для этого разделение межзвездной среды на две фазы - плотные холодные облака и разреженную среду с более высокой темп-рой - может происходить под воздействием тепловой неустойчивости Рэлея-Тейлора в межзвездном магн. поле. Газово-пылевые комплексы с массой , характерным размером (10-100) пк и концентрацией частиц n ~10 2 см -3 . действительно наблюдаются благодаря излучению ими радиоволн. Сжатие (коллапс) таких облаков требует определенных условий: гравитац. частиц облака должна превосходить сумму энергии теплового движения частиц, энергии вращения облака как целого и магн. энергии облака (критерий Джинса). Если учитывается только энергия теплового движения, то с точностью до множителя порядкаединицы критерий Джинса записывается в виде: align="absmiddle" width="205" height="20">, где - масса облака, T - темп-ра газа в К, n - число частиц в 1 см 3 . При типичных для совр. межзвездных облаков темп-рах К могут сколлапсировать лишь облака с массой, не меньшей . Критерий Джинса указывает, что для образования звезд реально наблюдаемого спектра масс концентрация частиц в коллапсирующих облаках должна достигать (10 3 -10 6) см -3 , т.е. в 10-1000 раз превышать наблюдаемую в типичных облаках. Однако такие концентрации частиц могут достигаться в недрах облаков, уже начавших коллапс. Отсюда следует, что происходит путем последовательной, осуществляющейся в неск. этапов, фрагментации массивных облаков. В этой картине естественно объясняется рождение звезд группами - скоплениями. При этом все еще неясными остаются вопросы, относящиеся к тепловому балансу в облаке, полю скоростей в нем, механизму, определяющему спектр масс фрагментов.

Коллапсирующие объекты звездной массы наз. протозвездами. Коллапс сферически-симметричной невращающейся протозвезды без магн. поля включает неск. этапов. В начальный момент времени облако однородно и изотермично. Оно прозрачно для собств. излучения, поэтому коллапс идет с объемными потерями энергии, гл. обр. за счет теплового излучения пыли, к-рой передают свою кинетич. энергию частицы газа. В однородном облаке нет градиента давления и сжатие начинается в режиме свободного падения с характерным временем , где G - , - плотность облака. С началом сжатия возникает волна разрежения, перемещающаяся к центру со скоростью звука, а т.к. коллапс происходит быстрее там, где плотность выше, протозвезда разделяется на компактное ядро и протяженную оболочку, в к-рой вещество распределяется по закону . Когда концентрация частиц в ядре достигает ~ 10 11 см -3 оно становится непрозрачным для ИК-излучения пылинок. Выделяющаяся в ядре энергия медленно просачивается к поверхности благодаря лучистой теплопроводности. Темп-ра начинает повышаться почти адиабатически, это приводит к росту давления, и ядро приходит в состояние гидростатич. равновесия. Оболочка продолжает падать на ядро, и на его периферии возникает . Параметры ядра в это время слабо зависят от общей массы протозвезды: К. По мере увеличения массы ядра за счет аккреции, его темп-ра изменяется практически адиабатически, пока не достигнет 2000 К, когда начинается диссоциация молекул H 2 . В результате расхода энергии на диссоциацию, а не не увеличение кинетич. энергии частиц, значение показателя адиабаты становится меньше 4/3, изменения давления не способны компенсировать силы тяготения и ядро повторно коллапсирует (см. ). Образуется новое ядро с параметрами , окруженное ударным фронтом, на которое аккрецируют остатки первого ядра. Подобная же перестройка ядра происходит при водорода.

Дальнейший рост ядра за счет вещества оболочки продолжается до тех пор, пока все вещество упадет на звезду либо рассеется под действием или , если ядро достаточно массивно (см. ). У протозвезд с характерное время вещества оболочки t a >t кн , поэтому их светимость определяется энерговыделением сжимающихся ядер.

Звезда, состоящая из ядра и оболочки, наблюдается как ИК-источник из-за переработки излучения в оболочке (пыль оболочки, поглощая фотоны УФ-излучения ядра, излучает в ИК-диапазоне). Когда оболочка становится оптически тонкой, протозвезда начинает наблюдаться как обычный объект звездной природы. У наиболее массивных звезд оболочки сохраняются до начала термоядерного горения водорода в центре звезды. Давление излучения ограничивает массу звезд величиной, вероятно, . Если даже и образуются более массивные звезды, то они оказываются пульсационно-неустойчивыми и могут потерять значит. часть массы на стадии горения водорода в ядре. Продолжительность стадии коллапса и рассеяния протозвездной оболочки того же порядка, что и время свободного падения для родительского облака, т.е. 10 5 -10 6 лет. Освещенные ядром сгустки темного вещества остатков оболочки, ускоренные звездным ветром, отождествляются с объектами Хербига-Аро (звездообразными сгущениями, имеющими эмиссионный спектр). Звезды малых масс, когда они становятся видимыми, находятся в области Г.-Р.д., занимаемой звездами типа Т Тельца (карликовыми ), более массивные - в области, где находятся эмиссионные звезды Хербига (неправильные ранних спектр. классов с эмиссионными линиями в спектрах).

Эволюц. треки ядер протозвезд с постоянной массой на стадии гидростатич. сжатия показаны на рис. 1. У звезд малых масс в момент, когда устанавливается гидростатич. равновесие, условия в ядрах таковы, что энергия в них переносится . Расчеты показывают, что темп-ра поверхности полностью конвективной звезды почти постоянна. Радиус звезды непрерывно уменьшается, т.к. она продолжает сжиматься. При неизменной темп-ре поверхности и уменьшающемся радиусе светимость звезды должна падать и на Г.-Р.д. этой стадии эволюции соответствуют вертикальные участки треков.

По мере продолжения сжатия темп-ра в недрах звезды повышается, вещество становится более прозрачным, и у звезд с align="absmiddle" width="90" height="17"> возникают лучистые ядра, но оболочки остаются конвективными. Менее массивные звезды остаются полностью конвективными. Их светимость регулируется тонким лучистым слоем в фотосфере. Чем массивнее звезда и чем выше ее эффективная темп-ра, тем больше у нее лучистое ядро (в звездах с align="absmiddle" width="74" height="17"> лучистое ядро возникает сразу). В конце концов, практически вся звезда (за исключением поверхностной конвективной зоны у звезд с массой ) переходит в состояние лучистого равновесия, при к-ром вся выделяющаяся в ядре энергия переносится излучением.

3. Эволюция на основе ядерных реакций

При темп-ре в ядрах ~ 10 6 К начинаются перве ядерные реакции - выгорают дейтерий, литий, бор. Первичное количество этих элементов настолько мало, что их выгорание практически не выдерживает сжатия. Сжатие прекращается, когда темп-ра в центре звезды достигает ~ 10 6 К и загорается водород, т.к. энергии, выделяющейся при термоядерном горении водорода, достаточно для компенсации потерь на излучение (см. ). Однородные звезды, в ядрах к-рых горит водород, образуют на Г.-Р.д. начальную главную последовательность (НГП). Массивные звезды достигают НГП быстрее звезд малой массы, т.к. у них скорость потерь энергии на единицу массы, а следовательно, и темп эволюции выше,чем у маломассивных звезд. С момента выхода на НГП Э.з. происходит на основе ядерного горения, главные стадии к-рого суммирована в табл. Ядерное горение может происходить до образования элементов группы железа, у к-рых наибольшая среди всех ядер энергия связи. Эволюц. треки звезд на Г.-Р.д. изображены на рис. 2. Эволюция центральных значений темп-ры и плотности звезд показана на рис. 3. При К осн. источником энергии явл. реакция водородного цикла, при б"ольших T - реакции углерод-азотного (CNO) цикла (см. ). Побочным эффектом CNO-цикла явл. установление равновесных концентраций нуклидов 14 N, 12 C, 13 C - соответственно 95%, 4% и 1% по массе. Преобладание азота в слоях, где происходило горение водорода, подтверждается результатами наблюдений , у к-рых эти слои оказываются на поверхности в результате потери внеш. слоев. У звезд, в центре к-рых реализуется CNO-цикл ( align="absmiddle" width="74" height="17">), возникает конвективное ядро. Причина этого в очень сильной зависимости энерговыделения от темп-ры: . Поток же лучистой энергии ~ T 4 (см. ), следовательно, он не может перенести всю выделяющуюся энергию, и должна возникнуть конвекция, более эффективная, чем лучистый перенос. У наиболее массивных звезд конвекцией охвачено более 50% массы звезд. Значение конвективного ядра для эволюции определяется тем, что ядерное горючее равномерно истощается в области, значительно большей, чем область эффективного горения, в то время как у звезд без конвективного ядра оно вначале выгорает лишь в малой окрестности центра, где темп-ра достаточно высока. Время выгорания водорода заключено в пределах от ~ 10 10 лет для до лет для . Время всех последующих стадий ядерного горения не превосходит 10% времени горения водорода, поэтому звезды на стадии горения водорода образуют на Г.-Р.д. густонаселенную область - (ГП). У звезд с темп-ра в центре никогда не достигает значений, необходимых для загорания водорода, они неограниченно сжимаются, превращаясь в "черные" карлики. Выгорание водорода при водит к увеличению ср. молекулярной массы вещества ядра, и поэтому для поддержания гидростатич. равновесия давление в центре дожно возрастать, что влечет за собой увеличение темп-ры в центре и градиента темп-ры по звезде, а следовательно, и светимости. К увеличению светимости приводит также и уменьшение непрозрачности вещества с ростом темп-ры. Ядро сжимается для поддержания условий ядерного энерговыделения с уменьшением содержания водорода, а оболочка расширяется из-за необходимости перенести возросший поток энергии от ядра. На Г.-Р.д. звезда перемещается вправо от НГП. Уменьшение непрозрачности приводит к отмиранию конвективных ядер у всех звезд, кроме наиболее массивныых. Темп эволюции массивных звезд наиболее высок, и они первыми покидают ГП. Время жизни на ГП составляет для звезд с ок. 10 млн. лет, с ок. 70 млн. лет, а с ок. 10 млрд. лет.

Когда содержание водорода в ядре уменьшается до 1%, расширение оболочек звезд с align="absmiddle" width="66" height="17"> сменяется общим сжатием звезды, необходимым для поддержания энерговыделения. Сжатие оболочки вызывает нагрев водорода в слое, прилегающем к гелиевому ядру, до темп-ры его термоядерного горения, и возникает слоевой источник энерговыделения. У звезд с массой , у к-рых в меньшей степени зависит от темп-ры и область энерговыделения не столь сильно концентрируется к центру, стадия общего сжатия отсутствует.

Э.з. после выгорания водорода зависит от их массы. Важнейшим фактором, влияющим на ход эволюции звезд с массой , явл. вырождение газа электронов при больших плотностях. В из-за большой плотности число квантовых состояний с малой энергией ограничено в силу принципа Паули и электроны заполняют квантовые уровни с высокой энергией, значительно превышающей энергию их теплового движения. Важнейшая особенность вырожденного газа состояит в том, что его давление p зависит лишь от плотности: для нерелятивистского вырождения и для релятивистского вырождения. Давление газа электронов намного превосходит давление ионов. Отсюда следует принципиальный для Э.з. вывод: поскольку сила тяготения, действующая на единичный объем релятивистски вырожденного газа, , зависит от плотности так же, как и градиент давления , должна существовать предельная масса (см. ), такая, что при align="absmiddle" width="66" height="15"> давление электронов не может противодействовать тяготению и начинается сжатие. Предельная масса align="absmiddle" width="139" height="17">. Граница области, в к-рой газ электронов вырожден, показана на рис. 3 . У звезд малых масс вырождение играет заметную роль уже в процессе образования гелиевых ядер.

Второй фактор, определяющий Э.з. на поздних стадиях, - это нейтринные потери энергии. В звездных недрах при T ~10 8 К осн. роль в рождении играют: фотонейтринный процесс , распад квантов плазменных колебаний (плазмонов) на пары нейтрино-антинейтрино (), аннигиляция пар электрон-позитрон () и (см. ). Важнейшая особенность нейтрино состояит в том, что вещество звезды для них практически прозрачно и нейтрино беспрепятственно уносят энергию из звезды.

Гелиевое ядро, в к-ром еще не возникли условия для горения гелия, сжимается. Темп-ра в слоевом источнике, прилегающем к ядру, увеличивается, скорость горения водорода возрастает. Необходимость переноса возросшего потока энергии приводит к расширению оболочки, на что тратится часть энергии. Поскольку светимость звезды не изменяется, темп-ра ее поверхности падает, и на Г.-Р.д. звезда перемещается в область, занимаемую красными гигантамию Время перестройки звезды на два порядка меньше времени выгорания водорода в ядре, поэтому между полосой ГП и областью красных сверхгигантов мало звезд. С уменьшением темп-ры оболочки возрастает ее прозрачность, вследствие этого появляется внеш. конвективная зона и возрастает светимость звезды.

Отвод энергии из ядра посредством теплопроводности вырожденных электронов и нейтринных потерь у звезд с оттягивает момент загорания гелия. Темп-ра начинает заметно расти лишь тогда, когда ядро становится почти изотермичным. Горение 4 He определяет Э.з. с момента, когда энерговыделение превышает потери энергии путем теплопроводности и излучения нейтрино. Это же условие относится к горению всех последующих видом ядерного топлива.

Примечательная особенность звездных ядер из вырожденного газа, охлаждаемых нейтрино, - это "конвергенция" - сближение треков, к-рые характеризуют соотношение плотности и темп-ры T c в центре звезды (рис. 3). Скорость энерговыделения при сжатии ядра определяется скоростью присоединения вещества к нему через слоевой источник, к-рая зависит только от массы ядра при данном виде топлива. В ядре должен поддерживаться баланс притока и оттока энергии, поэтому в ядрах звезд устанавливается одинаковое распределение темп-ры и плотности. К моменту загорания 4 He масса ядра в зависимости от содержания тяжелых элементов. В ядрах из вырожденного газа загорание 4 He имеет характер теплового взрыва, т.к. энергия, выделяющаяся при горении, идет на увеличение энергии теплового движения электронов, но давление с ростом темп-ры почти не изменяется до тех пор, пока тепловая энергия электронов не сравняется с энергией вырожденного газа электронов. Тогда вырождение снимается и ядро быстро расширяется - происходит гелиевая вспышка. Гелиевые вспышки, вероятно, сопровождаются потерей звездного вещества. У , где массивные звезды уже давно закончили эволюцию и красные гиганты имеют массы , звезды на стадии горения гелия находятся на горизонтальной ветви Г.-Р.д.

В гелиевых ядрах звезд с align="absmiddle" width="90" height="17"> газ не вырожден, 4 He загорается спокойно, но ядра также расширяются из-за возрастания T c . У наиболее массивных звезд загорание 4 He происходит еще тогда, когда они явл. голубыми сверхгигантами. Расширение ядра ведет к уменьшению T в области водородного слоевого источника, и светимость звезды после гелиевой вспышки падает. Для поддержания теплового равновесия оболочка сжимается, и звезда уходит из области красных сверхгигантов. Когда 4 He в ядре истощается, снова начинается сжатие ядра и расширение оболочки, звезда опять становится красным сверхгигантом. Образуется слоевой источник горения 4 He, к-рый доминирует в энерговыделении. Снова возникает внеш. конвективная зона. По мере выгорания гелия и водорода толщина слоевых источников уменьшается. Тонкий слой горения гелия оказывается термически неустойчивым, т.к. при очень сильной чувствительности энерговыделения к темп-ре () теплопроводность вещества недостаточна для того, чтобы погасить тепловые возмущения в слое горения. При тепловых вспышках в слое возникает конвекция. Если она проникает в слои, богатые водородом, то в результате медленного процесса (s -процесса, см. ) синтезируются элементы с атомными массами от 22 Ne до 209 B.

Давление излучения на пыль и молекулы, образующиеся в холодных протяженных оболочках красных сверхгигантов, приводит к непрерывной потере вещества со скоростью до в год . Непрерывная потеря массы может дополнятся потерями, обусловленными неустойчивостью слоевого горения или пульсациями, что может привести к выбросу одной или неск. оболочек. Когда количество вещества над углеродно-кислородным ядром становится меньшим нек-рого предела, оболочка для поддержания темп-ры в слоях горения вынуждена сжиматься до тех пор, пока сжатие способно поддерживать горение; звезда на Г.-Р.д. смещается почти горизонтально влево. На этом этапе неустойчивость слоев горения также может приводить к расширению оболочки и потере вещества. Пока звезда достаточно горяча, она наблюдается как ядро с одной или неск. оболочками. Когда слоевые источники смещаются к поверхности звезды настолько, что темп-ра в них становится ниже необходимой для ядерного горения, звезда охлаждается, превращаясь в белый карлик с , излучающий за счет расхода тепловой энергии ионного компонента его вещества. Характерное время охлаждения белых карликов ~ 10 9 лет. Нижняя граница масс одиночных звезд, превращающихся в белые карлики, неясна, она оценивается в 3-6 . У звезд с электронный газ вырождается на стадии роста углеродно-кислородных (C,O-) ядер звезд. Как и в гелиевых ядрах звезд, из-за нейтринных потерь энергии происходит "конвергенция" условий в центре и к моменту загорания углерода в C,O-ядре . Загорание 12 C при таких условиях, скорее всего, имеет характер взрыва и приводит к полному разрушению звезды. Полного разрушения может не произойти, если . Такая плотность достижима, когда скорость роста ядра определяется аккрецией вещества спутника в тесной двойной системе.

Рождение звезд и целых Галактик происходит перманентно, равно как и их смерть. Исчезновение одной звезды компенсирует появление другой, посему нам кажется, что на небе постоянно одни и те же светила.

Своему рождению звезды обязаны процессу сжатия межзвездного облака, на которое влияет сильное падение давления газа. В зависимости от массы сжимающегося газа меняется количество рождающихся звезд: если она маленькая, то рождается одно светило, если большая, то возможно образование целого скопления.

Этапы возникновения звезды


Здесь нужно выделить два основных этапа – быстрое сжатие протозвезды и медленное. В первом случае отличительной чертой является гравитация: вещество протозвезды совершает практически свободное падение к ее центру. На этом этапе температура газа остается неизменной, его длительность составляет порядка 100 тысяч лет, и за это время размер протозвезды сокращается очень существенно.

И если на первом этапе избыток тепла постоянно уходил постоянно, то затем протозвезда становится более плотной. Отвод тепла происходит уже не такими высокими темпами, газ продолжает сжиматься и быстро нагреваться. Медленное сжатие протозвезды длиться еще дольше – более десяти миллионов лет. По достижению сверхвысокой температуры (более миллиона градусов) свое слово берут термоядерные реакции, ведущие к прекращению сжатия. После чего образуется новая звезда из протозвезды.

Жизненный цикл звезды


Звезды подобно живому организму: они рождаются, достигают своего пика развития, а затем умирают. Крупные перемены начинаются, когда в центральной части звезды заканчивается водород. Он начинает перегорать уже в оболочке, постепенно увеличивая ее размеры, и звезда может превратиться в красного гиганта или даже в сверхгиганта.

Все звезды имеют совершенно разный жизненный цикл, все зависит от массы. Те, что имеют большой вес, живут дольше и, в конце концов, взрываются. Наше солнце не относится к массивным звездам, посему небесные тела подобного типа ожидает другой конец: они постепенно угасают, превращаются плотную структуру, именуемую белым карликом.

Красный гигант

Израсходовавшие запас водорода звезды могут приобрести колоссальные размеры. Такие светила называют красным гигантом. Их отличительной чертой, помимо размера, является протяженная атмосфера и очень низкая температура поверхности. Исследования показали, что отнюдь не все звезды проходят такой этап развития. Красными гигантами становятся только те светила, имеющие солидную массу.

Наиболее яркие представители – Арктур и Антаре, видимые слоя которых имеют относительно невысокую температуру, а разряженная оболочка обладает солидной протяженностью. Внутри тел происходит процесс поджигания гелия, отличающийся отсутствием резких колебаний светимости.

Белый карлик

Небольшие по размеру и массе звезды превращаются в белого карлика. Их плотность чрезвычайно высока (примерно в миллион раз выше плотности воды), из-за чего вещество светила переходит в состояние, именуемое «вырожденным газом». Внутри белого карлика не наблюдается никаких термоядерных реакций, а свет ему дает только факт остывания. Размер звезды в таком состоянии крайне мал. Например, многие белые карлики имеют схожий Земле размер.

Жизненный цикл звёзд зависит от их массы. Крупные звёзды интенсивнее сжигают своё топливо и сгорают за несколько десятков миллионов лет. Мелкие могут «тлеть» сотни миллиардов лет.

Когда водород заканчивается, прекращаются реакции нуклеосинтеза. Гравитация начинает сжимать звезду, до тех пор пока повышающаяся при этом температура не запускает механизм вторичного термоядерного синтеза, в ходе которого гелий ядра звезды превращается в углерод. В его сердце остаётся кристалл чистого углерода – алмаз на тысячу карат. При вторичном сгорании гелия в ядре звезды выделяется так много энергии, что звезда начинает раздуваться и превращается в красного гиганта , так как её внешний слой остывает до красной части спектра. Диаметр звезды увеличивается более чем в 100 раз. Когда заканчивается топливо для вторичного термоядерного синтеза, гравитационные силы вновь начинают сжимать звезду и она превращается в вырожденного белого карлика , который будет излучать в пространство остаточное тепло, пока не остынет окончательно. В процессе эволюции звезды из красного гиганта в белый карлик, большая часть её внешних слоёв сбрасывается в межзвёздную среду и становится материалом для последующего формирования новых звёзд.

Такой финал уготован звёздам средним, таким как наше Солнце.

Звёзды более, чем в 8 раз массивнее Солнца погибают по другому сценарию. После сгорания в них гелия их огромная масса при сжатии разогревает ядро и оболочку настолько, что запускаются последующие реакции нуклеосинтеза, в результате которых получаются сначала углерод, потом кремний, магний и следующие элементы с возрастанием ядерных масс. Причём с началом каждой новой реакции в ядре звезды, предыдущая продолжается в её оболочке. Все химические элементы, из которых состоит Вселенная, образовались именно в результате нуклеосинтеза в недрах умирающих крупных звезд. Как только очередь доходит до образования железа, наступает конец звезды. При его синтезе энергия не выделяется, а только поглощается. За короткий промежуток времени топливо заканчивается, термоядерные реакции прекращаются, силы гравитации обрушивают оболочку звезды к её центру. Энергия столкновения внешней оболочки с ядром очень велика. Она взрывает звезду.


В этой ослепительной вспышке сверхновой звезды выделяется в 100 раз больше энергии, чем даёт Солнце за всю свою жизнь. Все химические элементы образованные в звезде разлетаются в космос, при этом образуя новые элементы и соединения. Дальше гравитация продолжает сжимать то, что осталось, но на определённом этапе ядерные силы останавливают сжатие и получается нейтронная звезда – пульсар . На её поверхности сверхсильные магнитные поля и сверхсильная гравитация.

Если же звезда была более, чем в 30 раз тяжелее Солнца, то после взрыва её, как сверхновой, гравитационный коллапс не останавливается – образуется чёрная дыра. Она имеет плотность такую, какую будет иметь Земля, если её сжать до диаметра 5 см. Поэтому сила гравитации чёрных дыр стремится к бесконечности. Такую силу притяжения не могут преодолеть даже частицы света со своими предельными скоростями. Поэтому чёрная дыра не отражает падающий на неё свет, она его поглощает. Отсюда такое название.

Учёные предполагают, что в чёрных дырах не действуют законы физики, перестаёт существовать пространство и время, но остаётся информация в виде голографических проекций. Край чёрной дыры – горизонт событий – это граница времени и пространства. Центр чёрной дыры – сингулярность – физическая неопределённость. Чёрная дыра поглощает звезды и туманности пока им хватает места. А потом выбрасывает мощный поток газа – квазар за пределы галактики. Ширина квазара больше чем диаметр Солнечной системы. За границей галактики начинают формироваться новые звёзды и новые галактики. Чёрные дыры руководят эволюцией Вселенной.

Смерть звезд даёт строительный материал для Вселенной. Все химические элементы – золото, серебро, платина, железо и прочие образуются внутри умирающих звёзд и при их взрывах разлетаются в космос.

Первые звёзды были массивными (в несколько тысяч раз больше Солнца) и нестабильными. Они быстро рождались и быстро умирали, оставляя после себя космическую пыль богатую разными химическими элементами.

Первые звёзды образовались из космических туманностей, благодаря энергии Большого Взрыва. На более поздних этапах и сейчас звёзды продолжают рождаться. Но это происходит только после взрыва другой сверхновой звезды. Его взрывная волна даёт импульс для взаимодействия частиц космической пыли, в результате чего они начинают двигаться и сцепляться. Сцепляясь в один объект они всё больше увеличивают его в размере, тем самым увеличивая его гравитацию, что ещё больше притягивает другие частицы, а потом уже и более крупные космические объекты.

Молодая звезда и её околозвездное пространство на начальном этапе это бушующая стихия с большим количеством хаотично вращающихся малых планет. Сталкиваясь между собой некоторые из них рассыпаются, а другие растут, поглощая остатки первых. От таких столкновений у Меркурия например слетела его верхняя кора и осталось только ядро.

Спустя 500 миллионов лет число планет уменьшается, а их размер увеличивается.

Солнце относится к малым звёздам. Его гибель через 5 – 6 миллиардов лет будет проходить по первому сценарию. Сейчас во Вселенной 80% звёзд не крупнее чем Солнце.

Фото с сайта CSO : На расстоянии в 35 миллионов световых лет от Земли, в созвездии Эридана (Eridanus), лежит спиральная галактика NGC 1637. В 1999 году ее безмятежная красота была нарушена вспышкой очень яркой сверхновой звезды. Снимок сделан с Очень Большим Телескопом ESO (VLT) в обсерватории Паранал в Чили.

Вполне естественно, что звёзды – не живые существа, но и они проходят через эволюционные этапы, сходные с рождением, жизнью и смертью. Подобно человеку, звезда на протяжении своей жизни подвергается радикальным изменениям. Но надо отметить, живут они явно подольше – миллионы и даже миллиарды земных лет.

Как рождаются звезды? Изначально, вернее после Большого Взрыва, материя во Вселенной была распределена неравномерно. Звезды начали образовываться в туманностях – гигантских облаках межзвездной пыли и газов, в основном водорода. На эту материю воздействует гравитация, и происходит сжатие части туманности. Тогда образуются круглые и плотные газопылевых облака – глобулы Бока. По мере того, как такая глобула продолжает сгущаться, её масса увеличивается за счет притяжения к себе материи из туманности. Во внутренней части глобулы сила гравитации наиболее сильна, и она начинает разогреваться и вращаться. Это – уже протозвезда. Атомы водорода начинают бомбардировать друг друга и вырабатывают тем самым большое количество энергии. В конце концов температура центральной части достигает температуры порядка пятнадцати миллионов градусов Цельсия, формируется ядро новой звезды. Новорожденная вспыхивает, начинает гореть и светиться. Как долго это будет продолжаться, зависит от того, какова была масса родившейся звезды. То, что я рассказывал на прошлой нашей встрече. Чем масса больше, тем жизнь звезды короче.
Кстати говоря, именно от массы зависит, сможет ли протозвезда стать звездой. Согласно расчетам, для того, чтобы это сжимающееся небесное тело превратилось в звезду, его масса должна быть не менее 8% от массы Солнца. Глобула меньших размеров, сгущаясь, будет постепенно охлаждаться и превратится в переходный объект, нечто среднее между звездой и планетой. Такие объекты называются коричневыми карликами.

Планета Юпитер, например, слишком мала для того, чтобы стать звездой. Если бы Юпитер был массивней, возможно, в его недрах начались бы термоядерные реакции, и наша Солнечная система была бы системой двойной звезды. Но это всё лирика…

Итак, основной этап жизни звезды. Большую часть своего существования звезда находится в равновесном состоянии. Сила гравитации стремится сжать звезду, а энергия, высвобожденная в результате протекающих в звезде термоядерных реакций, вынуждает звезду расширятся. Эти две силы создают устойчивое положения равновесия – настолько устойчивое, что звезда так живёт миллионы и миллиарды лет. Эта фаза жизни звезды обеспечивает ей место в главной последовательности. -


Просияв миллионы лет, крупная звезда, то есть звезда по меньшей мере вшестеро тяжелее Солнца, - начинает выгорать. Когда в ядре заканчивается водород, звезда расширяется и охлаждается, превращаясь в красный сверхгигант. Затем этот сверхгигант будет сжиматься, пока наконец не взорвется чудовищной и драматической сверкающей вспышкой, получившей название сверхновой звезды. Тут надо отметить, что очень массивные голубые сверхгиганты минуют стадию превращения в красный сверхгигант и куда быстрее взрываются сверхновой.
Если оставшееся ядро сверхновой мало, то начинается его катастрофическое сжатие (гравитационный коллапс) в очень плотную нейтронную звезду, а если оно достаточно большое, то будет сжиматься ещё сильнее, образуя чёрную дыру.

Несколько иная кончина у обычной звезды. Такая звезда живёт дольше и умирает более спокойной смертью. Солнце, например, будет гореть ещё пять миллиардов лет, прежде чем в его ядре иссякнет водород. Его внешние слои затем станут расширяться и охлаждаться; образуется красный гигант. В таком виде звезда может просуществовать порядка 100 миллионов лет на гелии, образовавшемся за время жизни в её ядре. Но и гелий выгорает. В довершении всего внешние слои отнесет прочь – они образуют планетарную туманность, а из ядра сожмётся плотный белый карлик. Хотя белый карлик достаточно горяч, в конце концов и он охладится, превратившись в мёртвую звезду, которую называют чёрным карликом.