Стандартный электродный потенциал ряд напряжений металлов. Пособие по химии для поступающих в высшие учебные заведения

Электрохимический ряд активности металлов (ряд напряжений , ряд стандартных электродных потенциалов ) - последовательность, в которой металлы расположены в порядке увеличения их стандартных электрохимических потенциалов φ 0 , отвечающих полуреакции восстановления катиона металла Me n+ : Me n+ + nē → Me

Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительных реакциях в водных растворах.

История

Последовательность расположения металлов в порядке изменения их химической активности в общих чертах была известна уже алхимикам . Процессы взаимного вытеснения металлов из растворов и их поверхностное осаждение (например, вытеснение серебра и меди из растворов их солей железом) рассматривались как проявление трансмутации элементов.

Поздние алхимики вплотную подошли к пониманию химической стороны взаимного осаждения металлов из их растворов. Так, Ангелус Сала в работе «Anatomia Vitrioli» (1613) пришёл к выводу, что продукты химических реакций состоят из тех же «компонентов», которые содержались в исходных веществах. Впоследствии Роберт Бойль предложил гипотезу о причинах, по которым один металл вытесняет другой из раствора на основе корпускулярных представлений .

В эпоху становления классической химии способность элементов вытеснять друг друга из соединений стала важным аспектом понимания реакционной способности. Й. Берцелиус на основе электрохимической теории сродства построил классификацию элементов, разделив их на «металлоиды» (сейчас применяется термин «неметаллы») и «металлы» и поставив между ними водород.

Последовательность металлов по их способности вытеснять друг друга, давно известная химикам, была в 1860-е и последующие годы особенно основательно и всесторонне изучена и дополнена Н. Н. Бекетовым . Уже в 1859 году он сделал в Париже сообщение на тему «Исследование над явлениями вытеснения одних элементов другими». В эту работу Бекетов включил целый ряд обобщений о зависимости между взаимным вытеснением элементов и их атомным весом, связывая эти процессы с «первоначальными химическими свойствами элементов - тем, что называется химическим сродством » . Открытие Бекетовым вытеснения металлов из растворов их солей водородом под давлением и изучение восстановительной активности алюминия, магния и цинка при высоких температурах (металлотермия) позволило ему выдвинуть гипотезу о связи способности одних элементов вытеснять другие из соединений с их плотностью: более лёгкие простые вещества способны вытеснять более тяжёлые (поэтому данный ряд часто также называют вытеснительный ряд Бекетова , или просто ряд Бекетова ).

Не отрицая значительных заслуг Бекетова в становлении современных представлений о ряде активности металлов, следует считать ошибочным бытующее в отечественной популярной и учебной литературе представление о нём как единственном создателе этого ряда. Многочисленные экспериментальные данные, полученные в конце XIX века, опровергали гипотезу Бекетова. Так, Уильям Одлинг описал множество случаев «обращения активности». Например, медь вытесняет олово из концентрированного подкисленного раствора SnCl 2 и свинец - из кислого раствора PbCl 2 ; она же способна к растворению в концентрированной соляной кислоте с выделением водорода . Медь, олово и свинец находятся в ряду правее кадмия , однако могут вытеснять его из кипящего слабо подкисленного раствора CdCl 2 .

Бурное развитие теоретической и экспериментальной физической химии указывало на иную причину различий химической активности металлов. С развитием современных представлений электрохимии (главным образом в работах Вальтера Нернста) стало ясно, что эта последовательность соответствует «ряду напряжений» - расположению металлов по значению стандартных электродных потенциалов . Таким образом, вместо качественной характеристики - «склонности» металла и его иона к тем или иным реакциям - Нерст ввёл точную количественную величину, характеризующую способность каждого металла переходить в раствор в виде ионов, а также восстанавливаться из ионов до металла на электроде, а соответствующий ряд получил название ряда стандартных электродных потенциалов .

Теоретические основы

Значения электрохимических потенциалов являются функцией многих переменных и поэтому обнаруживают сложную зависимость от положения металлов в периодической системе . Так, окислительный потенциал катионов растёт с увеличением энергии атомизации металла, с увеличением суммарного потенциала ионизации его атомов и с уменьшением энергии гидратации его катионов.

В самом общем виде ясно, что металлы, находящиеся в начале периодов характеризуются низкими значениями электрохимических потенциалов и занимают места в левой части ряда напряжений. При этом чередование щелочных и щёлочноземельных металлов отражает явление диагонального сходства . Металлы, расположенные ближе к серединам периодов, характеризуются большими значениями потенциалов и занимают места в правой половине ряда. Последовательное увеличение электрохимического потенциала (от −3,395 В у пары Eu 2+ /Eu [ ] до +1,691 В у пары Au + /Au) отражает уменьшение восстановительной активности металлов (свойство отдавать электроны) и усиление окислительной способности их катионов (свойство присоединять электроны). Таким образом, самым сильным восстановителем является металлический европий , а самым сильным окислителем - катионы золота Au + .

В ряд напряжений традиционно включается водород, поскольку практическое измерение электрохимических потенциалов металлов производится с использованием стандартного водородного электрода .

Практическое использование ряда напряжений

Ряд напряжений используется на практике для сравнительной [относительной] оценки химической активности металлов в реакциях с водными растворами солей и кислот и для оценки катодных и анодных процессов при электролизе :

  • Металлы, стоящие левее водорода, являются более сильными восстановителями, чем металлы, расположенные правее: они вытесняют последние из растворов солей. Например, взаимодействие Zn + Cu 2+ → Zn 2+ + Cu возможно только в прямом направлении.
  • Металлы, стоящие в ряду левее водорода, вытесняют водород при взаимодействии с водными растворами кислот-неокислителей; наиболее активные металлы (до алюминия включительно) - и при взаимодействии с водой.
  • Металлы, стоящие в ряду правее водорода, с водными растворами кислот-неокислителей при обычных условиях не взаимодействуют.
  • При электролизе металлы, стоящие правее водорода, выделяются на катоде; восстановление металлов умеренной активности сопровождается выделением водорода; наиболее активные металлы (до алюминия) невозможно при обычных условиях выделить из водных растворов солей.

Таблица электрохимических потенциалов металлов

Металл Катион φ 0 , В Реакционная способность Электролиз (на катоде):
Li + -3,0401 реагирует с водой выделяется водород
Cs + -3,026
Rb + -2,98
K + -2,931
Fr + -2,92
Ra 2+ -2,912
Ba 2+ -2,905
Sr 2+ -2,899
Ca 2+ -2,868
Eu 2+ -2,812
Na + -2,71
Sm 2+ -2,68
Md 2+ -2,40 реагирует с водными растворами кислот
La 3+ -2,379
Y 3+ -2,372
Mg 2+ -2,372
Ce 3+ -2,336
Pr 3+ -2,353
Nd 3+ -2,323
Er 3+ -2,331
Ho 3+ -2,33
Tm 3+ -2,319
Sm 3+ -2,304
Pm 3+ -2,30
Fm 2+ -2,30
Dy 3+ -2,295
Lu 3+ -2,28
Tb 3+ -2,28
Gd 3+ -2,279
Es 2+ -2,23
Ac 3+ -2,20
Dy 2+ -2,2
Pm 2+ -2,2
Cf 2+ -2,12
Sc 3+ -2,077
Am 3+ -2,048
Cm 3+ -2,04
Pu 3+ -2,031
Er 2+ -2,0
Pr 2+ -2,0
Eu 3+ -1,991
Lr 3+ -1,96
Cf 3+ -1,94
Es 3+ -1,91
Th 4+ -1,899
Fm 3+ -1,89
Np 3+ -1,856
Be 2+ -1,847
U 3+ -1,798
Al 3+ -1,700
Md 3+ -1,65
Ti 2+ -1,63 конкурирующие реакции: и выделение водорода , и выделение металла в чистом виде
Hf 4+ -1,55
Zr 4+ -1,53
Pa 3+ -1,34
Ti 3+ -1,208
Yb 3+ -1,205
No 3+ -1,20
Ti 4+ -1,19
Mn 2+ -1,185
V 2+ -1,175
Nb 3+ -1,1
Nb 5+ -0,96
V 3+ -0,87
Cr 2+ -0,852
Zn 2+ -0,763
Cr 3+ -0,74
Ga 3+ -0,560

Все электрохимические процессы можно разделить на две противоположные группы: процессы электролиза, при которых под действием внешнего источника электроэнергии происходят химические реакции, и процессы возникновения электродвижущей силы и электрического тока вследствие определенных химических реакций.

В первой группе процессов электрическая энергия превращается в химическую, во второй ‒ наоборот, химическая ‒ в электрическую.

Примерами процессов обоих типов могут быть процессы, происходящие в аккумуляторах. Так, при работе свинцового аккумулятора генератора электрической энергии происходит реакция:

Рb + РbO 2 + 4Н + + 2SO 4 2- → РbSO 4 + 2Н 2 O.

Вследствие этой реакции освобождается энергия, которая и превращается в электрическую. Когда аккумулятор разрядится, его заряжают, пропуская через него электрический ток в обратном направлении.

В обратном направлении протекает и химическая реакция:

2РbSO 4 + 2Н 2 O → Рb + РbO 2 + 4Н + + 2SO 4 2- .

В этом случае электрическая энергия превратилась в химическую. Теперь аккумулятор снова имеет запас энергии и снова может разряжаться.

Все электрохимические реакции происходят при протекании электрического тока в цепи. Этот круг обязательно состоит из последовательно соединенных металлических проводников и раствора (или расплава) электролита. В металлических проводниках, как мы знаем, ток переносят электроны, в растворе электролитов ‒ ионы. Непрерывность протекания тока в цепи обеспечивается только тогда, когда происходят процессы на электродах, т.е. на границе металл ‒ электролит На одном электроде происходит процесс приема электронов ‒ восстановление, на втором электроде - процесс отдачи электронов, т.е. окисления.



Особенностью электрохимических процессов, в отличие от обычных химических, является пространственное разделение процессов окисления и восстановления. Из этих процессов, которые не могут происходить друг без друга, и состоит в целом химический процесс в электрохимической системе.

Если погрузить металлическую пластинку (электрод) в раствор электролита, то между пластинкой и раствором возникает разность потенциалов, которая называется электродного потенциала.

Рассмотрим причины его возникновения. В узлах кристаллической решетки металла содержатся только положительно заряженные ионы. Благодаря их взаимодействию с полярными молекулами растворителя, они отрываются от кристалла и переходят в раствор. Вследствие такого перехода в металлической пластинке остается избыток электронов, отчего она приобретает отрицательный заряд. Положительно заряженные ионы, которые перешли в раствор благодаря электростатическому притяжению, остаются непосредственно у поверхности металлического электрода. Образуется двойной электрический слой. Между электродом и раствором возникает скачок потенциала, который и называется электродным потенциалом.

Наряду с переходом ионов из металла в раствор происходить и обратный процесс. Скорость перехода ионов из металла в раствор V 1 может быть больше скорость обратного перехода ионов из раствора в металл V 2 (V 2 ˃ V 1).

Такая разница в скоростях приведет в результате к уменьшению количества положительных ионов в металле и увеличению их в растворе. Металлический электрод приобретает отрицательный заряд, раствор ‒ положительного.

Чем больше разница V 1 ‒V 2 , тем более негативным будет заряд металлического электрода. В свою очередь величина V 2 зависит от содержания ионов металла в растворе; большим их концентрациям соответствует большая скорость V 2 . Следовательно, с увеличением концентрации ионов в растворе уменьшается отрицательный заряд металлического электрода.

Если, наоборот, скорость перехода ионов металла в раствор будет меньше скорость обратного процесса (V 1 < V 2), то на металлическом электроде будет избыток положительных ионов, а в растворе ‒ их нехватка. В таком случае электрод вступит положительный заряд, а раствор ‒ негативного.

В обоих случаях разность потенциалов, которая возникает в результате неравномерного распределения зарядов, ускорять медленный процесс и тормозить быстрее. Вследствие этого наступит момент, когда скорости обоих процессов станут равными. Наступит равновесие, которое будет иметь динамичный характер. Переход ионов из металла в раствор и обратно будет происходить все время и в состоянии равновесия. Скорости этих процессов в состоянии равновесия будут одинаковыми (V 1p = V 2p). Величина электродного потенциала, которая хранится в состоянии равновесия, называется равновесным электродным потенциалом.

Потенциал, который возникнет между металлом и раствором, если погрузить металл в раствор, в котором концентрация ионов этого металла равна одному грамм-иона, называться нормальным или стандартным электродным потенциалом.

Если разместить нормальные потенциалы электродных реакций для различных металлов так, чтобы их алгебраические величины последовательно росли, то мы получим известный из общего курса химии ряд напряжений. В этом ряду все элементы размещены в зависимости от их электрохимических свойств, которые непосредственно связаны с химическими свойствами. Так, все металлы расположены в меди (т.е. с более негативными потенциалами), относительно легко окисляются, а все металлы, размещенные после меди, окисляются с достаточно большими трудностями.

К, Na, Са, Мg, А1, Мn, Zn, Fe,

Ni, Sn, Pb, Н2, Сu, Нg, Аg, Аu.

Каждый член ряда, как более активный, может вытеснять из соединений любого члена ряда, стоящего вправо от него в ряду напряжений.

Рассмотрим механизм действия гальванического элемента, схему которого представлен на рис. Элемент состоит из цинковой пластинки, погруженной в раствор сульфата цинка, и медной пластинки, погруженной в раствор сульфата меди.

Рис. Схема медно-цинкового гальванического элемента

Оба сосуды с растворами, которые называются полуэлементами, соединенные между собой электролитическим ключом в гальванический элемент. Этот ключ (стеклянная трубка, заполненная электролитом) позволяет ионам перемещаться из одного сосуда (полуэлемента) в другую. Вместе растворы сульфата цинка и сульфата меди не смешиваются.

Если электрическая цепь разомкнутое, то никаких изменений в металлических пластинках и в растворе не происходит, а когда замкнуть круг, то по кругу потечет ток. Электроны из места, где плотность отрицательного заряда выше (т.е. с цинковой пластинки), перемещаться в места с меньшей плотностью отрицательного заряда или к месту с положительным зарядом (т.е. к медной пластинки). Вследствие перемещения электронов равновесие на границе металл ‒ раствор нарушится. Избыток отрицательных зарядов в цинковой пластинке уменьшится, соответственно уменьшатся силы притяжения, и часть ионов цинка из двойного электрического слоя перейдет в общий объем раствора. Это приведет к уменьшению скорости процесса перехода ионов Zn 2+ из раствора в металл. Увеличится разница V 1 ‒V 2 (которая в состоянии равновесия равна нулю), и новое количество ионов цинка перейдет из металла в раствор. Это обусловит появление избытка электронов в цинковой пластинке, которые немедленно переместятся к медной пластинки, и опять все будет непрерывно повторяться. Вследствие этого цинк растворяться, а в кругу непрерывно протекать электрический ток.

Понятно, что непрерывное перемещение электронов от цинковой пластинки к медной возможно только тогда, когда они асимилируют на медной пластинке. Появление избытка электронов в медной пластинке приведет к перестройке двойного слоя. Отрицательные ионы SO 4 2- отталкиваться, а положительные ионы меди, которые есть в растворе, будут заходить в двойной электрический слой благодаря электростатическому притяжению, обусловленном появлением электронов. Скорость процесса перехода ионов в металлV 2 увеличится. Ионы Сu 2+ проникать в кристаллическую решетку медной пластинки, присоединяя электроны. Именно этот процесс ассимиляции электронов на медной пластинке обеспечит непрерывность процесса в целом.

Величина ЭДС Е равна разности электродных потенциалов Е 1 и Е 2 на электродах: Е = Е 1 ‒Е 2 .

Процессы, которые происходят на электродах, можно изобразить схемой: на грани цинковая пластинка ‒ электролит Zn ‒ 2е - = Zn 2+ , на грани медная пластинка электролит Сu 2+ + 2е - = Сu.

Как видим, процессы окисления цинка и восстановление меди разделены в пространстве, они происходят на разных электродах. В целом химическую реакцию, которая происходит в медно-цинковом элементе, можно записать в ионной форме так:

Zn + Сu 2+ = Zn 2+ + Сu.

Такая же картина будет наблюдаться и в том случае, когда обе пластинки будут заряжены отрицательно относительно раствора. Погрузим две медные пластинки в разбавленные растворы сульфата меди. Концентрация ионов меди в этих растворах С 1 и С 2 (С 2 > С 1). Предположим, что обе пластинки зарядятся негативно относительно растворов. Но пластинка А в сосуде с концентрацией раствора С 1 зарядится более негативно благодаря тому, что концентрация ионов меди в этом сосуде меньше, чем во второй сосуде, и соответственно скорость проникновения ионов Сu 2+ в кристаллическую решетку будет меньше. Если замкнуть круг, то электроны будут перемещаться от пластинки А, где их плотность больше, к пластинке В. На грани пластинки А с электролитом происходить процесс Сu° ‒ 2е - = Сu 2+ , на грани пластинки В с электролитом Сu 2+ + 2е - + Сu°.

Обе пластинки, как было уже отмечено, заряжены отрицательно относительно раствора. Но пластинка А заряжена отрицательно относительно пластинки В и поэтому в гальваническом элементе выполнять роль отрицательного электрода, а пластинка В ‒ положительного.

Величина ЭДС, равной разности электродных потенциалов, будет тем больше, чем больше разница концентраций ионов в растворах.

Уравнение Нернста - уравнение, связывающее окислительно-восстановительный потенциал системы с активностями веществ, входящих в электрохимическое уравнение, и стандартными электродными потенциалами окислительно-восстановительных пар.

,

Электродный потенциал, - стандартный электродный потенциал, измеряется в вольтах;

Электрохимические системы

Общая характеристика

Электрохимия - раздел химии, которая изучает процессы возникновения разности потенциалов и превращение химической энергии в электрическую (гальванические элементы), а также осуществление химических реакций за счет затраты электрической энергии (электролиз). Эти два процесса, имеющие общую природу нашли широкое применение в современной технике.

Гальванические элементы используются как автономные и малогабаритные источники энергии для машин, радиотехнических устройств и приборов управления. При помощи электролиза получают различные вещества, обрабатывают поверхности, создают изделия нужной формы.

Электрохимические процессы не всегда служат на пользу человеку, а иногда приносят большой вред, вызывая усиленную коррозию и разрушение металлических конструкций. Чтобы умело использовать электрохимические процессы и бороться с нежелательными явлениями, их надо изучить и уметь регулировать.

Причиной возникновения электрохимических явлений служит переход электронов или изменение степени окисления атомов веществ, участвующих в электрохимических процессах, то есть окислительно-восстановительные реакции, протекающие в гетерогенных системах. В окислительно-восстановительных реакциях электроны непосредственно переходят от восстановителя к окислителю. Если процессы окисления и восстановления пространственно разделить, а электроны направить по металлическому проводнику, то такая система будет представлять собой гальванический элемент. Причиной возникновения и протекания электрического тока в гальваническом элементе является разность потенциалов.

Электродный потенциал. Измерение электродных потенциалов

Если взять пластину какого либо металла и опустить ее в воду, то ионы поверхностного слоя под действием полярных молекул воды отрываются и гидратированными переходят в жидкость. В результате такого перехода жидкость заряжается положительно, а металл отрицательно, поскольку на нем появляется избыток электронов. Накопление ионов металла в жидкости начинает тормозить растворение металла. Устанавливается подвижное равновесие

Ме 0 + mН 2 О = Ме n + × m H 2 O + ne -

Состояние равновесия зависит как от активности металла так и от концентрации его ионов в растворе. В случае активных металлов, стоящих в ряду напряжений до водорода, взаимодействие с полярными молекулами воды заканчивается отрывом от поверхности положительных ионов металла и переходом гидратировнных ионов в раствор (рис. б). Металл заряжается отрицательно. Процесс является окислением. По мере увеличения концентрации ионов у поверхности становится вероятным обратный процесс - восстановление ионов. Электростатическое притяжение между катионами в растворе и избыточными электронами на поверхности образует двойной электрический слой. Это приводит к возникновению на границе соприкосновения металла и жидкости определенной разности потенциалов, или скачка потенциала. Разность потенциалов, возникающую между металлом и окружающей его водной средой, называют электродным потенциалом. При погружении металла в раствор соли этого металла равновесие смещается. Повышение концентрации ионов данного металла в растворе облегчает процесс перехода ионов из раствора в металл. Металлы, ионы которых обладают значительной способностью к переходу в раствор, будут заряжаться и в таком растворе положительно, но в меньшей степени, чем в чистой воде.

Для неактивных металлов равновесная концентрация ионов металла в растворе очень мала. Если такой металл погрузить в раствор соли этого металла, то положительно заряженные ионы выделяются на металле с большей скоростью, чем происходит переход ионов из металла в раствор. Поверхность металла получит положительный заряд, а раствор отрицательный из-за избытка анионов соли. И в этом случае на границе металл - раствор возникает двойной электрический слой, следовательно, определенная разность потенциалов (рис. в). В рассмотренном случае электродный потенциал положительный.

Рис. Процесс перехода иона из металла в раствор:

а – равновесие; б – растворение; в – осаждение

Потенциал каждого электрода зависит от природы металла, концентрации его ионов в растворе и температуры. Если металл опустить в раствор его соли, содержащей один моль-ион металла на 1 дм 3 (активность которого равна 1), то электродный потенциал будет постоянной величиной при температуре 25 о С и давлении 1 атм. Такой потенциал называется стандартным электродным потенциалом (Е о).

Ионы металла, имеющие положительный заряд, проникая в раствор и перемещаясь в поле потенциала границы раздела металл-раствор, затрачивают энергию. Эта энергия компенсируется работой изотермического расширения от большей концентрации ионов на поверхности к меньшей в растворе. Положительные ионы накапливаются в приповерхностном слое до концентрации с о , а затем уходят в раствор, где концентрация свободных ионов с . Работа электрического поля ЕnF равна изотермической работе расширения RTln(с o /с). Приравняв оба выражения работы можно вывести величину потенциала

Еn F = RTln(с o /с), -Е = RTln(с/с о)/nF,

где Е – потенциал металла, В; R – универсальная газовая постоянная, Дж/моль К; Т – температура, K; n – заряд иона; F – число Фарадея; с – концентрация свободных ионов;

с о – концентрация ионов в поверхностном слое.

Непосредственно измерить величину потенциала не представляется возможным, так как невозможно экспериментально определить с о. Опытным путем определяют величины электродных потенциалов относительно величины другого электрода, потенциал которого условно принимают равным нулю. Таким стандартным электродом или электродом сравнения является нормальный водородный электрод (н.в.э.) . Устройство водородного электрода показано на рисунке. Он состоит из платиновой пластинки, покрытой электролитически осаждённой платиной. Электрод погружен в 1М раствор серной кислоты (активность ионов водорода равна 1 моль/дм 3) и омывается струей газообразного водорода под давлением 101 кПа и Т = 298 К. При насыщении платины водородом на поверхности металла устанавливается равновесие, суммарный процесс выражается уравнением

2Н + +2е ↔ Н 2 .

Если пластинку металла, погруженного в 1М раствор соли этого металла, соединить внешним проводником со стандартным водородным электродом, а растворы электролитическим ключом, то получим гальванический элемент (рис. 32). Электродвижущая сила этого гальванического элемента будет являться величиной стандартного электродного потенциала данного металла (Е о ).

Схема измерения стандартного электродного потенциала

относительно водородного электрода

Взяв в качестве электрода цинк находящийся в 1 М растворе сульфата цинка и соединив его с водородным электродом, получим гальванический элемент, схему которого запишем следующим образом

(-) Zn/Zn 2+ // 2H + /H 2 , Pt (+).

В схеме одна черта означает границу раздела между электродом и раствором, две черты – границу между растворами. Анод записывается слева, катод справа. В таком элементе осуществляется реакция Zn о + 2H + = Zn 2+ + Н 2 , а электроны по внешней цепи переходят от цинкового к водородному электроду. Стандартный электродный потенциал цинкового электрода (-0,76 В).

Взяв в качестве электрода медную пластинку, при указанных условиях в сочетании со стандартным водородным электродом, получим гальванический элемент

(-) Pt, H 2 /2H + //Cu 2+ /Cu (+).

В этом случае протекает реакция: Cu 2+ + H 2 = Cu о + 2H + . Электроны по внешней цепи перемещаются от водородного электрода к медному электроду. Стандартный электродный потенциал медного электрода (+0,34 В).

Ряд стандартных электродных потенциалов (напряжений). Уравнение Нернста

Располагая металлы в порядке возрастания их стандартных электродных потенциалов, получают ряд напряжений Николая Николаевича Бекетова (1827-1911), или ряд стандартных электродных потенциалов. Числовые значения стандартных электродных потенциалов для ряда технически важных металлов приведены в таблице.

Ряд напряжений металлов

Ряд напряжений характеризует некоторые свойства металлов:

1. Чем меньшее значение имеет электродный потенциал металла, тем он химически активнее, легче окисляется и труднее восстанавливается из своих ионов. Активные металлы в природе существуют только в виде соединений Na, K, ..., встречаются в природе, как в виде соединений, так и в свободном состоянии Cu, Ag, Hg; Au, Pt - только в свободном состоянии;

2. Металлы, имеющие более отрицательный электродный потенциал, чем магний, вытесняют водород из воды;

3. Металлы, стоящие в ряду напряжений до водорода, вытесняют водород из растворов разбавленных кислот (анионы которых не проявляют окислительных свойств);

4. Каждый металл ряда, не разлагающий воду, вытесняет металлы, имеющие более положительные значения электродных потенциалов из растворов их солей;

5. Чем больше отличаются металлы значениями электродных потенциалов, тем большее значение э.д.с. будет иметь построенный из них гальванический элемент.

Зависимость величины электродного потенциала (Е) от природы металла, активности его ионов в растворе и температуры выражается уравнением Нернста

Е Ме = Е о Ме + RTln(a Ме n +)/nF,

где Е о Ме – стандартный электродный потенциал металла, a Me n + – активность ионов металла в растворе. При стандартной температуре 25 о С, для разбавленных растворов заменяя активность (а) концентрацией (с), натуральный логарифм десятичным и подставляя значения R , T и F, получим

Е Ме = Е о Ме + (0,059/n)lgс.

Например, для цинкового электрода, помещенного в раствор своей соли, концентрацию гидратированных ионов Zn 2+ × mH 2 O сокращенно обозначим Zn 2+ , тогда

Е Zn = Е о Zn + (0,059/n) lg[ Zn 2+ ].

Если = 1 моль/дм 3 , то Е Zn = Е о Zn .

Гальванические элементы, их электродвижущая сила

Два металла, погруженные в растворы своих солей, соединенные проводником, образуют гальванический элемент. Первый гальванический элемент был изобретен Александром Вольтом в 1800 г. Элемент состоял из медных и цинковых пластинок, разделенных сукном, смоченным раствором серной кислоты. При последовательном соединении большого числа пластинок элемент Вольта обладает значительной электродвижущей силой (э.д.с.).

Возникновение электрического тока в гальваническом элементе обусловлено разностью электродных потенциалов взятых металлов и сопровождается химическими превращениями, протекающими на электродах. Рассмотрим работу гальванического элемента на примере медно-цинкового элемента (Дж. Даниэля – Б.С. Якоби).

Схема медно-цинкового гальванического элемента Даниэля-Якоби

На цинковом электроде, опущенном в раствор сульфата цинка (с = 1 моль/дм 3), происходит окисление цинка (растворение цинка) Zn о - 2e = Zn 2+ . Электроны поступают во внешнюю цепь. Zn – источник электронов. Источник электронов принято считать отрицательным электродом – анодом. На электроде из меди, погруженном в раствор сульфата меди (с = 1 моль/дм 3) происходит восстановление ионов металла. Атомы меди осаждаются на электроде Cu 2+ + 2e = Cu о. Медный электрод положительный. Он является катодом. Одновременно часть ионов SO 4 2- переходят через солевой мостик в сосуд с раствором ZnSO 4 . Сложив уравнения процессов, протекающих на аноде и катоде, получим суммарное уравнение

Борис Семенович Якоби (Мориц Герман)(1801-1874)

или в молекулярной форме

Это обычная окислительно - восстановительная реакция, протекающая на границе металл-раствор. Электрическая энергия гальванического элемента получается за счёт химической реакции. Рассмотренный гальванический элемент можно записать в виде краткой электрохимической схемы

(-) Zn/Zn 2+ //Cu 2+ /Cu (+).

Необходимым условием работы гальванического элемента является разность потенциалов, она называется электродвижущей силой гальванического элемента (э.д.с.) . Э.д.с. всякого работающего гальванического элемента величина положительная. Для вычисления э.д.с. гальванического элемента надо из величины более положительного потенциала отнять величину менее положительного потенциала. Так э.д.с. медно–цинкового гальванического элемента при стандартных условиях (t = 25 о С, с = 1 моль/дм 3 , Р = 1 атм) равна разности между стандартными электродными потенциалами меди (катода) и цинка (анода), то есть

э.д.с. = Е о С u 2+ / Cu - Е o Zn 2+ / Zn = +0,34 В – (-0,76 В) = +1,10 В.

В паре с цинком ион Cu 2+ восстанавливается.

Необходимую для работы разность электродных потенциалов можно создать, используя один и тот же раствор разной концентрации и одинаковые электроды. Такой гальванический элемент называется концентрационным , а работает он за счет выравнивания концентраций раствора. Примером может служить элемент, составленный из двух водородных электродов

Pt, H 2 / H 2 SO 4 (с`) // H 2 SO 4 (с``) /H 2, Pt,

где с` = `; с`` = ``.

Если р = 101 кПа, с` < с``, то его э.д.с. при 25 о С определяется уравнением

Е = 0,059lg(с``/с`).

При с` = 1 моль-ион/дм 3 э.д.с. элемента определяется концентрацией водородных ионов во втором растворе, то есть Е = 0,059lgс`` = -0,059 pH.

Определение концентрации ионов водорода и, следовательно, рН среды измерением э.д.с. соответствующего гальванического элемента называется потенциометрией.

Аккумуляторы

Аккумуляторами называются гальванические элементы многоразового и обратимого действия. Они способны превращать накопленную химическую энергию в электрическую при разрядке, а электрическую в химическую, создавая запас ее в процессе зарядки. Так как э.д.с. аккумуляторов невелика, при эксплуатации их обычно соединяют в батареи.

Свинцовый аккумулятор . Свинцовый аккумулятор состоит из двух перфорированных свинцовых пластин, одна из которых (отрицательная) после зарядки содержит наполнитель - губчатый активный свинец, а другая (положительная) - диоксид свинца. Обе пластины погружены в 25 - 30 % раствор серной кислоты (рис. 35). Схема аккумулятора

(-) Pb/ p -p H 2 SO 4 / PbO 2 /Pb(+).

Перед зарядкой в поры свинцовых электродов вмазывается паста, содержащая помимо органического связующего оксид свинца PbO. В результате взаимодействия оксида свинца с серной кислотой в порах электродных пластин образуется сульфат свинца

PbО + H 2 SO 4 = PbSO 4 + H 2 O.

Аккумуляторы заряжают, пропуская электрический ток

Процесс разрядки

Суммарно процессы, происходящие при зарядке и разрядке аккумулятора, можно представить следующим образом

При зарядке аккумулятора плотность электролита (серной кислоты) увеличивается, а при разрядке уменьшается. По плотности электролита судят о степени разряженности аккумулятора. Э.д.с. свинцового аккумулятора 2,1 В.

Преимущества свинцового аккумулятора - большая электрическая емкость, устойчивость в работе, большое количество циклов (разрядка- зарядка). Недостатки - большая масса и, следовательно, малая удельная ёмкость, выделение водорода при зарядке, не герметичность при наличии концентрированного раствора серной кислоты. В этом отношении лучше щелочные аккумуляторы.

Щелочные аккумуляторы. К ним относятся кадмиево-никеливые и железо-никелиевые аккумуляторы Т. Эдисона.

Схемы аккумулятора Эдисона и свинцового аккумулятора

Томас Эдисон(1847-1931)

Они сходны между собой. Различие состоит в материале пластин отрицательного электрода. В первом случае они кадмиевые, во втором железные. Электролитом служит раствор КОН ω = 20 %. Наибольшее практическое значение имеют кадмиево-никелевые аккумуляторы. Схема кадмиево-никелевого аккумулятора

(-) Cd / раствор KOH /Ni 2 O 3 /Ni (+).

Работа кадмиевого-никелевого аккумулятора основана на окислительно-восстановительной реакции с участием Ni 3+

Э.д.с. заряженного кадмиево-никелевого аккумулятора составляет 1.4 В.

В таблице представлены характеристики аккумулятора Эдисона и свинцового аккумулятора.

Гроссе Э., Вайсмантель X.

Химия для любознательных. Основы химии и занимательные опыты.

Глава 3 (продолжение)

НЕБОЛЬШОЙ КУРС ЭЛЕКТРОХИМИИ МЕТАЛЛОВ

Мы уже познакомились с электролизом растворов хлоридов щелочных металлов и получением металлов с помощью расплавов. Сейчас попробуем на нескольких несложных опытах изучить некоторые закономерности электрохимии водных растворов, гальванических элементов, а также познакомиться с получением защитных гальванических покрытий.
Электрохимические методы применяются в современной аналитической химии, служат для определения важнейших величин теоретической химии.
Наконец, коррозия металлических предметов, которая наносит большой урон народному хозяйству, в большинстве случаев является электрохимическим процессом.

РЯД НАПРЯЖЕНИЯ МЕТАЛЛОВ

Основополагающим звеном для понимания электрохимических процессов является ряд напряжения металлов. Металлы можно расположить в ряд, который начинается с химически активных и заканчивается наименее активными благородными металлами:
Li, Rb, К, Ва, Sr, Са, Mg, Al, Be, Mn, Zn, Cr, Ga, Fe, Cd, Tl, Co, Ni, Sn, Pb, H, Sb, Bi, As, Cu, Hg, Ag, Pd, Pt, Au .
Так выглядит, по новейшим представлениям, ряд напряжений для важнейших металлов и водорода. Если из двух любых металлов ряда изготовить электроды гальванического элемента, то на предшествующем в ряду материале появится отрицательное напряжение.
Величина напряжения (электрохимический потенциал ) зависит от положения элемента в ряду напряжении и от свойств электролита.
Сущность ряда напряжения установим из нескольких простых опытов, для которых нам понадобятся источник тока и электрические измерительные приборы. Растворим около 10 г кристаллического сульфата меди в 100 мл воды и погрузим в раствор стальную иглу или кусочек железной жести. (Рекомендуем предварительно до блеска зачистить железо тонкой наждачной шкуркой.) Через короткое время железо покроется красноватым слоем выделившейся меди. Более активное железо вытесняет медь из раствора, причем железо растворяется в виде ионов, а медь выделяется в виде металла. Процесс продолжается до тех пор, пока раствор находится в контакте с железом. Как только медь покроет всю поверхность железа, он практически прекратится. В этом случае образуется довольно пористый слой меди, так что защитные покрытия без применения тока получать нельзя.
В следующих опытах опустим в раствор сульфата меди небольшие полоски цинковой и свинцовой жести. Через 15 минут вытащим их, промоем и исследуем под микроскопом. Мы различим красивые, похожие на ледяные, узоры, которые в отраженном свете имеют красную окраску и состоят из выделившейся меди. Здесь также более активные металлы перевели медь из ионного в металлическое состояние.
В свою очередь, медь может вытеснять металлы, стоящие ниже в ряду напряжений, то есть менее активные. На тонкую полоску листовой меди или на расплющенную медную проволоку (предварительно зачистив поверхность до блеска) нанесем несколько капель раствора нитрата серебра. Невооруженным взглядом можно будет заметить образовавшийся черноватый налет, который под микроскопом в отраженном свете имеет вид тонких игл и растительных узоров (так называемых дендритов).
Чтобы выделить цинк без тока, необходимо применить более активный металл. Исключая металлы, которые бурно взаимодействуют с водой, находим в ряду напряжений выше цинка магний. Несколько капель раствора сульфата цинка поместим на кусок магниевой ленты или на тонкую стружку электрона. Раствор сульфата цинка получим, растворив кусочек цинка в разбавленной серной кислоте. Одновременно с сульфатом цинка добавим несколько капель денатурата. На магнии через короткий промежуток времени заметим, особенно под микроскопом, выделившийся в виде тонких кристалликов цинк.
В общем, любой член ряда напряжения может быть вытеснен из раствора, где он находится в виде иона, и переведен в металлическое состояние. Однако при испытании всевозможных комбинаций, нас может постичь разочарование. Казалось бы, если полоску алюминия погрузить в растворы солей меди, железа, свинца и цинка, на ней должны выделяться эти металлы. Но этого, однако, не происходит. Причина неудачи кроется не в ошибке в ряду напряжений, а основана на особом торможении реакции, которое в данном случае обусловлено тонкой оксидной пленкой на поверхности алюминия. В таких растворах алюминий называют пассивным.

ЗАГЛЯНЕМ ЗА КУЛИСЫ

Чтобы сформулировать закономерности протекающих процессов, мы можем ограничиться рассмотрением катионов, а анионы исключить, так как они сами в реакции не участвуют. (Правда, на скорость осаждения влияет вид анионов.) Если для простоты предположить, что и выделяющийся и растворенный металлы дают двухзарядные катионы, то можно записать:

Me 1 + Me 2 2+ = Ме 1 2+ + Ме 2

Причем для первого опыта Ме 1 = Fe, Me 2 = Сu.
Итак, процесс состоит в обмене зарядами (электронами) между атомами и ионами обоих металлов. Если отдельно рассматривать (в качестве промежуточных реакций) растворение железа или осаждение меди, то получим:

Fe = Fe 2+ + 2е --

Сu 2+ + 2е -- = Сu

Теперь рассмотрим случай, когда металл погружен в воду или в раствор соли, с катионом которой обмен невозможен из-за его положения в ряду напряжений. Несмотря на это, металл стремится перейти в раствор в виде иона. При этом атом металла отдает два электрона (если металл двухвалентный), поверхность погруженного в раствор металла заряжается по отношению к раствору отрицательно, а на границе раздела образуется двойной электрический слой. Эта разность потенциалов препятствует дальнейшему растворению металла, так что процесс вскоре приостанавливается.
Если в раствор погрузить два различных металла, то они оба зарядятся, но менее активный - несколько слабее, в силу того, что его атомы менее склонны к отщеплению электронов.
Соединим оба металла проводником. Вследствие разности потенциалов поток электронов потечет от более активного металла к менее активному, который образует положительный полюс элемента. Протекает процесс, при котором более активный металл переходит в раствор, а катионы из раствора выделяются на более благородном металле. Проиллюстрируем теперь несколькими опытами приведенные выше несколько абстрактные рассуждения (которые к тому же представляют собой грубое упрощение).
Сначала наполним химический стакан вместимостью 250 мл до середины 10%-ным раствором серной кислоты и погрузим в нее не слишком маленькие куски цинка и меди. К обоим электродам припаяем или приклепаем медную проволоку, концы которой не должны касаться раствора.
Пока концы проволоки не соединены друг с другом, мы будем наблюдать растворение цинка, которое сопровождается выделением водорода. Цинк, как следует из ряда напряжения, активнее водорода, поэтому металл может вытеснять водород из ионного состояния. На обоих металлах образуется двойной электрический слой. Разность потенциалов между электродами проще всего обнаружить с помощью вольтметра. Непосредственно после включения прибора в цепь стрелка укажет примерно 1 В, но затем напряжение быстро упадет. Если подсоединить к элементу маленькую лампочку, потребляющую напряжение 1 В, то она загорится - сначала довольно сильно, а затем накал станет слабым.
По полярности клемм прибора можно сделать вывод, что медный электрод является положительным полюсом. Это можно доказать и без прибора, рассмотрев электрохимию процесса. Приготовим в маленьком химическом стакане или в пробирке насыщенный раствор поваренной соли, добавим примерно 0,5 мл спиртового раствора индикатора фенолфталеина и погрузим оба замкнутых проволокой электрода в раствор. Около отрицательного полюса будет наблюдаться слабое красноватое окрашивание, которое вызвано образованием на катоде гидроксида натрия.
В других опытах можно помещать в ячейку различные пары металлов и определять возникающее напряжение. Например, магний и серебро дадут особенно большую разность потенциалов благодаря значительному расстоянию между ними ряду напряжений, а цинк и железо, наоборот, очень маленькую, менее десятой доли вольта. Применяя алюминий, мы не получим из-за пассивации практически никакого тока.
Все эти элементы, или, как говорят электрохимики, цепи, имеют тот недостаток, что при съемке тока на них очень быстро падает напряжение. Поэтому электрохимики всегда измеряют истинную величину напряжения в обесточенном состоянии с помощью метода компенсации напряжения, то есть сравнивая его с напряжением другого источника тока.
Рассмотрим процессы в медно-цинковом элементе несколько подробнее. На катоде цинк переходит в раствор по следующему уравнению:

Zn = Zn 2+ + 2е --

На медном аноде разряжаются ионы водорода серной кислоты. Они присоединяют электроны, поступающие по проволоке от цинкового катода и в результате образуются пузырьки водорода:

2Н + + 2е -- = Н 2

Через короткий промежуток времени медь покроется тончайшим слоем пузырьков водорода. При этом медный электрод превратится в водородный, а разность потенциалов уменьшится. Этот процесс называют поляризацией электрода. Поляризацию медного электрода можно устранить, добавив в ячейку после падения напряжения немного раствора дихромата калия. После этого напряжение опять увеличится, так как дихромат калия окислит водород до воды. Бихромат калия действует в этом случае как деполяризатор.
На практике применяют гальванические цепи, электроды которых не поляризуются, или цепи, поляризацию которых можно устранить, добавив деполяризаторы.
В качестве примера неполяризуемого элемента рассмотрим элемент Даниэля, который раньше часто использовали как источник тока. Это тоже медно-цинковый элемент, но оба металла погружены в различные растворы. Цинковый электрод помещается в пористой глиняной ячейке, наполненной разбавленной (примерно 20%-ной) серной кислотой. Глиняную ячейку подвешивают в большом стакане, в котором находится концентрированный раствор сульфата меди, а на дне - слой кристаллов сульфата меди. Вторым электродом в этом сосуде служит цилиндр из медного листа.
Этот элемент можно изготовить из стеклянной банки, имеющейся в продаже глиняной ячейки (в крайнем случае используем цветочный горшок, закрыв отверстие в дне) и двух подходящих по размеру электродов.
В процессе работы элемента цинк растворяется с образованием сульфата цинка, а на медном электроде выделяются ионы меди. Но при этом медный электрод не поляризуется и элемент дает напряжение около 1 В. Собственно, теоретически напряжение на клеммах составляет 1,10 В, но при съеме тока мы измеряем несколько меньшую величину, вследствие электрического сопротивления ячейки.
Если мы не снимем ток с элемента, нужно вытащить цинковый электрод из раствора серной кислоты, потому что иначе он будет растворяться с образованием водорода.
Схема простой ячейки, для которой не требуется пористой перегородки, показана на рисунке. Цинковый электрод расположен в стеклянной банке наверху, а медный - вблизи дна. Вся ячейка наполнена насыщенным раствором поваренной соли. На дно банки насыплем горсть кристаллов сульфата меди. Образующийся концентрированный раствор сульфата меди будет смешиваться с раствором поваренной соли очень медленно. Поэтому при работе элемента на медном электроде будет выделяться медь, а в верхней части ячейки будет растворяться цинк в виде сульфата или хлорида.
Сейчас для батарей используют почти исключительно сухие элементы, которые более удобны в употреблении. Их родоначальником является элемент Лекланше. Электродами служат цинковый цилиндр и угольный стержень. Электролит представляет собой пасту, которая в основном состоит из хлорида аммония. Цинк растворяется в пасте, а на угле выделяется водород. Чтобы избежать поляризации, угольный стержень опускают в полотняный мешочек со смесью из угольного порошка и пиролюзита. Угольный порошок увеличивает поверхность электрода, а пиролюзит действует как деполяризатор, медленно окисляя водород.
Правда, деполяризующая способность пиролюзита слабее, чем у упоминавшегося ранее дихромата калия. Поэтому при получении тока в сухих элементах напряжение быстро падает, они "утомляются " вследствие поляризации. Только через некоторое время происходит окисление водорода пиролюзитом. Таким образом, элементы "отдыхают ", если некоторое время не пропускать ток. Проверим это на батарейке для карманного фонарика, к которой подсоединим лампочку. Параллельно лампе, то есть непосредственно на клеммы, подключим вольтметр.
Сначала напряжение составит около 4,5 В. (Чаще всего в таких батарейках последовательно включены три ячейки, каждая с теоретическим напряжением 1,48 В.) Через некоторое время напряжение упадет, накал лампочки ослабеет. По показаниям вольтметра мы сможет судить, как долго батарейке нужно отдыхать.
Особое место занимают регенерирующие элементы, известные под названием аккумуляторы . В них протекают обратимые реакции, и их можно перезаряжать после разрядки элемента, подключив к внешнему источнику постоянного тока.
В настоящее время наиболее распространены свинцовые аккумуляторы; в них электролитом служит разбавленная серная кислота, куда погружены две свинцовые пластины. Положительный электрод покрыт диоксидом свинца PbO 2 , отрицательный представляет собой металлический свинец. Напряжение на клеммах составляет примерно 2,1 В. При разрядке на обеих пластинах образуется сульфат свинца, который опять превращается при зарядке в металлический свинец и в пероксид свинца.

НАНЕСЕНИЕ ГАЛЬВАНИЧЕСКИХ ПОКРЫТИЙ

Осаждение металлов из водных растворов с помощью электрического тока является процессом, обратным электролитическому растворению, с которым мы познакомились при рассмотрении гальванических элементов. Прежде всего исследуем осаждение меди, которое используют в медном кулонометре для измерения количества электричества.

Металл осаждается током

Отогнув концы двух пластин из тонкой листовой меди, подвесим их на противоположных стенках химического стакана или, лучше, маленького стеклянного аквариума. Клеммами прикрепим к пластинам провода.
Электролит приготовим по следующему рецепту: 125 г кристаллического сульфата меди, 50 г концентрированной серной кислоты и 50 г спирта (денатурата), остальное - вода до 1 литра. Для этого сначала растворим сульфат меди в 500 мл воды, затем осторожно, маленькими порциями добавим серную кислоту (Нагревание! Жидкость может разбрызгиваться! ), после этого вольем спирт и доведем водой до объема 1 л.
Готовым раствором наполним кулонометр и включим в цепь переменное сопротивление, амперметр и свинцовый аккумулятор. С помощью сопротивления отрегулируем ток таким образом, чтобы его плотность составила 0,02-0,01 А/см 2 поверхности электродов. Если медная пластина имеет площадь 50 см 2 , то сила тока должна находиться в пределах 0,5-1 А.
Через некоторое время на катоде (отрицательный электрод) начнет выделяться светло-красная металлическая медь, а на аноде (положительный электрод) медь будет переходить в раствор. Чтобы очистить медные пластины, будем пропускать ток в кулонометре около получаса. Затем вытащим катод, осторожно высушим его с помощью фильтровальной бумаги и точно взвесим. Установим в ячейке электрод, замкнем цепь с помощью реостата и будем поддерживать постоянную силу тока, например 1 А. Через час разомкнем цепь и опять взвесим высушенный катод. При токе 1 А за час работы его масса увеличится на 1,18 г.
Следовательно, количество электричества, равное 1 ампер-часу, при прохождении через раствор может выделить 1,18 г меди. Или в общем: выделившееся количество вещества прямо пропорционально количеству прошедшего через раствор электричества.
Чтобы выделить 1 эквивалент иона, необходимо пропустить через раствор количество электричества, равное произведению заряда электрода е на число Авогадро N A:
е*N A = 1,6021 * 10 -19 * 6,0225*10 23 = 9,65*10 4 А*с*моль -1 Эта величина обозначается символом F и называется в честь первооткрывателя количественных законов электролиза числом Фарадея (точное значение F - 96 498 А*с*моль -1). Следовательно, для выделения из раствора данного числа эквивалентов n э через раствор следует пропустить количество электричества, равное F*n э А*с*моль -1 . Иначе говоря,
I*t = F*n э Здесь I - ток, t - время прохождения тока через раствор. В разделе "Основы титрования " уже было показано, что число эквивалентов вещества n э равно произведению числа молей на эквивалентное число:
n э = n *Z Следовательно:

I *t = F*n*Z

В данном случае Z - заряд ионов (для Ag + Z = 1, для Cu 2+ Z = 2, для Al 3+ Z = 3 и т. д.). Если выразить число молей в виде отношения массы к мольной массе (n = m / М ), то мы получим формулу, которая позволяет рассчитать все процессы, происходящие при электролизе:

I*t = F*m*Z / M

По этой формуле можно вычислить ток:

I = F*m*Z/(t*M) = 9,65*10 4 *1,18*2 / (3600*63,54) А*с*г*моль/(с*моль*г) = 0,996 А

Если ввести соотношение для электрической работы W эл

W эл = U*I*t и W эл /U = I*t

То, зная напряжение U , можно вычислить:

W эл = F*m*Z*U/M

Можно также рассчитать, сколько времени необходимо для электролитического выделения определенного количества вещества или сколько вещества выделится за определенное время. Во время опыта плотность тока необходимо поддерживать в заданных пределах. Если она будет меньше 0,01 А/см 2 , то выделится слишком мало металла, так как будут частично образовываться ионы меди(I). При слишком высокой плотности тока сцепление покрытия с электродом будет слабым и при извлечении электрода из раствора оно может осыпаться.
На практике гальванические покрытия на металлах применяют прежде всего для защиты от коррозии и для получения зеркального блеска.
Кроме того, металлы, особенно медь и свинец, очищают с помощью анодного растворения и последующего выделения на катоде (электролитическое рафинирование).
Чтобы покрыть железо медью или никелем, необходимо сначала тщательно очистить поверхность предмета. Для этого отполируем ее отмученным мелом и последовательно обезжирим разбавленным раствором едкого натра, водой и спиртом. Если предмет покрыт ржавчиной, надо протравить его заранее в 10-15%-ном растворе серной кислоты.
Очищенное изделие подвесим в электролитической ванне (маленький аквариум или химический стакан), где оно будет служить в качестве катода.
Раствор для нанесения медного покрытия содержит в 1 л воды 250 г сульфата меди и 80-100 г концентрированной серной кислоты (Осторожно! ). В данном случае анодом будет служить медная пластинка. Поверхность анода примерно должна быть равна поверхности покрываемого предмета. Поэтому надо всегда следить, чтобы медный анод висел в ванне на такой же глубине, как и катод.
Процесс будем проводить при напряжении 3-4 В (две аккумуляторные батареи) и плотности тока 0,02-0,4 А/см 2 . Температура раствора в ванне должна составлять 18-25 °С.
Обратим внимание на то, чтобы плоскость анода и покрываемая поверхность были параллельны друг другу. Предметы сложной формы лучше не использовать. Варьируя длительность электролиза, можно получать медное покрытие разной толщины.
Часто прибегают к предварительному меднению для того, чтобы на этот слой нанести прочное покрытие из другого металла. Особенно часто это применяется при хромировании железа, никелировании цинкового литья и в других случаях. Правда, для этой цели используют очень ядовитые цианидные электролиты.
Для приготовления электролита для никелирования в 450 мл воды растворим 25 г кристаллического сульфата никеля, 10 г борной кислоты или 10 г цитрата натрия. Цитрат натрия можно приготовить самим, нейтрализовав раствор 10 г лимонной кислоты разбавленным раствором едкого натра или раствором соды. Анодом пусть будет пластина никеля возможно большей площади, а в качестве источника напряжения возьмем аккумулятор.
Величину плотности тока с помощью переменного сопротивления будем поддерживать равной 0,005 А/см 2 . Например, при поверхности предмета 20 см 2 надо работать при силе тока 0,1 А. После получаса работы предмет будет уже отникелирован. Вытащим его из ванны и протрем тканью. Впрочем, процесс никелирования лучше не прерывать, так как тогда слой никеля может запассивироваться и последующее никелевое покрытие будет плохо держаться.
Чтобы достичь зеркального блеска без механической полировки, введем в гальваническую ванну так называемую блескообразующую добавку. Такими добавками служат, например, клей, желатина, сахар. Можно ввести в никелевую ванну, например, несколько граммов сахара и изучить его действие.
Чтобы приготовить электролит для хромирования железа (после предварительного меднения), в 100 мл воды растворим 40 г ангидрида хромовой кислоты СrО 3 (Осторожно! Яд! ) и точно 0,5 г серной кислоты (ни в коем случае не больше!). Процесс протекает при плотности тока около 0,1 А/см 2 , а в качестве анода используется свинцовая пластина, площадь которой должна быть несколько меньше площади хромируемой поверхности.
Никелевые и хромовые ванны лучше всего слегка подогреть (примерно до 35 °С). Обратим внимание на то, что электролиты для хромирования, особенно при длительном процессе и высокой силе тока, выделяют содержащие хромовую кислоту пары, которые очень вредны для здоровья. Поэтому хромирование следует проводить под тягой или на открытом воздухе, например на балконе.
При хромировании (а в меньшей степени и при никелировали) не весь ток используется на осаждение металла. Одновременно выделяется водород. На основании ряда напряжений следовало бы ожидать, что металлы, стоящие перед водородом, вообще не должны выделяться из водных растворов, а напротив должен был бы выделяться менее активный водород. Однако здесь, как и при анодном растворении металлов, катодное выделение водорода часто тормозится и наблюдается только при высоком напряжении. Это явление называют перенапряжением водорода, и оно особенно велико, например, на свинце. Благодаря этому обстоятельству может функционировать свинцовый аккумулятор. При зарядке аккумулятора вместо РbО 2 на катоде должен бы возникать водород, но, благодаря перенапряжению, выделение водорода начинается тогда, когда аккумулятор почти полностью заряжен.

К металлам относятся s-элементы 1 и 2 групп, все d- и f-элементы, а также ряд р-элементов главных подгрупп: 3 (кроме бора), 4 (Ge, Sn, Pb), 5 (Sb, Bi) и Ро. Наиболее типичные элементы-металлы расположены в начале периодов. Ранее мы говорили о том, что в металлах имеет место сильно делокализованная связь. Это вызвано тем, что, вследствие эффекта экранирования, валентные электроны в атомах металлов слабее притягиваются к ядру и первые энергии ионизации для них относительно невелики. При обычной для нас температуре (порядка 300 К), которая довольно далека от абсолютного нуля, энергии теплового движения достаточно для свободного передвижения электронов по всему металлу.

Поскольку связь в металлах сильно делокализована и распространяется на весь кристалл, то металлы обладают высокой пластичностью, электро- и теплопроводностью. Наибольшей электро- и теплопроводностью обладают серебро и медь, наименьшей – ртуть. Последняя является и самым легкоплавким металлом (-38,9 С). самым тугоплавким металлом является вольфрам (3390 С). Такое большое различие в температурах плавления и кипения объясняется наличием в металлах, кроме металлической связи, и определенной доли ковалентных связей, особенно для переходных элементов, обладающих большим количеством валентных электронов.

Рассмотрим электронные конфигурации ртути и вольфрама.

Hg – 5d 10 6s 2 ; W – 5d 4 6s 2 . Межмолекулярное взаимодействие между атомами ртути очень мало, настолько мало, что в целом при большой плотности, вследствие тяжести атомов, она является самым легкоплавким металлом. Поскольку все подуровни в атоме ртути заполнены, то образование ковалентных связей вообще невозможно, а металлическая связь довольно слаба, слабее, чем в щелочных металлах, которые вообще являются самыми легкоплавкими среди всех металлов. Наоборот, в атоме W возможно образование сразу четырех валентных связей. Кроме того, металлическая связь наиболее сильна среди всех 5d-элементов, а сами атомы тяжелее, чем у электронных аналогов: Mo и Cr. Совокупность данных факторов и приводит к наибольшей тугоплавкости вольфрама.

Электронная конфигурация осмия (5d 6 6s 2) такова, что ему до завершения 5d-подуровня не хватает 4 электронов, поэтому он наиболее сильно способен притягивать электроны соседних атомов, что вызывает укорочение связи металл-металл. Поэтому осмий обладает наибольшей плотностью (22,4 г/см 3).

В чистом виде металлы встречаются сравнительно мало. В основном, это инертные в химическом отношении металлы (золото, а также металлы платиновой группы – платина, родий, иридий, осмий и т.д.). Серебро, медь, ртуть, олово могут находиться как в самородном состоянии, так и в виде соединений. Остальные металлы встречаются в виде соединений, которые называются рудами.

Металлы из их соединений получают, восстанавливая их из оксидов. В качестве восстановителей применяют С, СО, активные металлы, водород, метан. Если в качестве руды выступает сульфид металла (ZnS, FeS 2), то его предварительно переводят в оксид. Восстановление металлов из их соединений другими металлами называется металлотермией. Некоторые металлы извлекают из растворов их солей электролизом, например, алюминий или натрий. В основе всех способов получения металлов из их соединений лежат окислительно-восстановительные процессы.

Процесс перехода электронов в окислительно-восстановительной полуреакции можно представить следующим общим уравнением:

Процессу перехода электронов отвечает изменение энергии Гиббса, равное ∆G = –nFE, где F (постоянная Фарадея, отвечает количеству электричества, необходимое для восстановления или окисления одного моля вещества) = 96500 Кл/моль, n – количество электронов, Е – электродный потенциал, В – это разность напряжений между окислителем и восстановителем. C другой стороны, ∆G = –RTlnK = –nFE; RTlnK = nFE. Отсюда Е = RTlnK/nF. Поскольку K = /, а 2,3lnK = lgK, то зависимость электродного потенциала от концентраций веществ – участников электродного процесса – и от температуры выражает следующее уравнение:

E = E 0 + lg/ – уравнение Нернста.

При стандартной температуре (298 К) уравнение принимает вид:

E = E 0 + 0,059lg/

Концентрация окислителя всегда указывается в числителе, а потенциал всегда указывается для полуреакции восстановления: Ox + ne = Red.

При равновесных концентрациях окислителя и восстановителя, равных единице, Е = Е 0 – стандартный электродный потенциал: это потенциал данного электродного процесса при единичных концентрациях всех веществ. Поскольку абсолютное значение стандартных электродных потенциалов определить невозможно, то за точку отсчета принят потенциал полуреакции: 2Н + + 2е = Н 2 . Потенциал данного электродного процесса принят равным 0 при единичных концентрациях катиона водорода. Водородный электрод состоит из платиновой пластинки, которая погружена в раствор серной кислоты с [Н + ] = 1 моль/л и омывается струей Н 2 под давлением 101325 Па при 298 К.

Электродным потенциалом называют ЭДС гальванического элемента, который состоит из исследуемого электрода и стандартного водородного электрода. Располагая металлы в порядке возрастания величины их электродных потенциалов, получаем ряд стандартных электродных потенциалов металлов. Он характеризует химические свойства металлов. Каждый металл в ряду вытесняет все последующие металлы из раствора их солей. Металлы, стоящие в ряду левее водорода, вытесняют его из растворов кислот.

Потенциал любой окислительно-восстановительной реакции можно вычислить, исходя из значения потенциалов полуреакций.

Рассмотрим простой пример: Zn + 2HCl = ZnCl 2 + H 2 . Для данного процесса имеют место две полуреакции:

Zn 2+ + 2e = Zn 0 E 0 (Zn 2+ /Zn) = –0,76 B

2H + + 2e = H 2 0 E 0 (2H + /H 2) = 0,00 B

Поскольку потенциал второй полуреакции выше, чем первой, вторая полуреакция будет протекать слева направо, то есть в сторону образования молекул водорода. Первая же полуреакция будет протекать справа налево, то есть в сторону образования катионов цинка.

При рассмотрении получения металлов мы говорили о том, что ряд металлов восстанавливают из их оксидов другими, более активными металлами. Например, магнием можно восстановить медь из оксида меди(II). Сравним две полуреакции:

Cu 2+ + 2e = Cu Е 0 = +0,34 В

Mg 2+ + 2e = Mg Е 0 = –2,36 В

Потенциал первой полуреакции выше, чем второй и именно она будет протекать слева направо, а вторая – справа налево.

Таким образом, для определения направления протекания окислительно-восстановительных реакций необходимо записать две полуреакции от окисленной форме к восстановленной и сравнить их потенциалы. Реакция, потенциал которой будет выше, будет протекать слева направо, а та, у которой потенциал ниже – справа налево.

Почти все реакции металлов являются окислительно-восстановительными процессами и для определения их направления необходимо, в первую очередь, учитывать потенциалы каждой из полуреакций в окислительно-восстановительном процессе. Но, кроме того, бывают и исключения. Например, свинец нерастворим в серной кислоте, несмотря на то, что потенциал пары Pb 2+ /Pb составляет –0,15 В. Дело в том, что сульфат свинца нерастворим и его образование препятствует дальнейшему окислению свинца.

Лекция 15.

Электролиз.

В растворах и расплавах электролитов находятся противоположно заряженные ионы (катионы и анионы), которые находятся в постоянном движении. Если в такого рода жидкость, например в расплав хлорида натрия (плавится при 801 0 С) погрузить инертные (графитовые) электроды и пропустить постоянный электрический ток, то ионы под действием внешнего электрического поля будут двигаться к электродам катионы – к катоду, а анионы – к аноду. Катионы натрия, достигнув катода, принимают от него электроны и восстанавливаются до металлического натрия:

Хлорид-ионы окисляются на аноде:

2Сl ­­– – 2e = Cl 2 0 ­

В итоге на катоде выделяется металлический натрий, а аноде молекулярный хлор. Суммарное уравнение электролиза расплава хлорида натрия выглядит следующим образом.

К: Na + + e = Na 0 2

А: 2Сl ­­– – 2e = Cl 2 0 ­ 1

2Na + + 2Сl ­­– электролиз ® 2Na 0 + Cl 2 0 ­

2NaСl = 2Na + Cl 2 ­

Эта реакция является окислительно-восстановительной: на аноде протекает процесс окисления, а на катоде – процесс восстановления.

Окислительно-восстановительный процесс, протекающий на электродах при прохождении электрического тока через расплав или раствор электролита, называется электролизом.

Сущность электролиза состоит в осуществлении за счет электрической энергии химических реакций. При этом катод отдает электроны катионам, а анод принимает электроны у анионов. Действие постоянного электрического тока намного сильнее действия химических восстановителей и окислителей. Именно путем электролиза удалось впервые получить газообразный фтор.

Электролиз проводили в растворе фторида калия в плавиковой кислоте. В данном случае на аноде выделяется фтор, а на катоде – водород. Электролиз осуществляется в электролитической ванне.

Следует различать электролиз расплавленных электролитов и их растворов. В последнем случае в процессах могут участвовать молекулы воды. Например, при электролизе водного раствора хлорида натрия на инертных (графитовых) электродах на катоде вместо катионов натрия восстанавливаются молекулы воды.

2Н 2 О + 2е = Н 2 ­ + 2ОН –

а на аноде окисляются хлорид-ионы:

2Сl ­­– – 2e = Cl 2 0 ­

В итоге на катоде выделяется водород, на аноде – хлор, а в растворе накапливаются молекулы гидроксида натрия. Общее уравнение электролиза водного раствора хлорида натрия имеет вид:

К: 2Н 2 О + 2е = Н 2 ­ + 2ОН –

А: 2Сl ­­– – 2e = Cl 2 0 ­

2Н 2 О + 2Сl ­­– = Н 2 ­ + Cl 2 ­ + 2ОН –

Кстати, именно таким образом в промышленности получают гидроксиды всех щелочных и некоторых щелочноземельных металлов, а также алюминия.

В чем же отличие электролиза расплавов и водных растворов электролитов? Восстановительные процессы на катоде водных растворов электролитов зависят от величины стандартных электродных потенциалов металлов, а именно они чаще всего выступают в качестве катионов, восстанавливающихся на катоде. Здесь возможны три варианта:

1. Катионы металлов, которые имеют стандартный электродный потенциал, выше, чем у водорода, то есть больше нуля при электролизе полностью восстанавливаются на катоде (медь, серебро, золото и другие).

2. Катионы металлов, имеющих очень маленькое значение стандартного электродного потенциала (от лития до алюминия включительно), не восстанавливаются на катоде, а восстанавливаются молекулы воды.

3. Катионы металлов, у которых значение стандартного электродного потенциала, меньше, чем у водорода, но больше, чем у алюминия, при электролизе восстанавливаются на катоде вместе с молекулами воды.

Если же в водном растворе находятся одновременно несколько катионов металлов, то при электролизе выделение их на катоде протекает в порядке уменьшения алгебраической величины стандартного электродного потенциала соответствующего металла. Например, при анализе бронзы типа БрАЖ или БрАЖМц (медь, алюминий, железо и марганец) можно, подобрав определенное значение силы тока, отделить медь на инертный электрод (например, платиновый), вытащить электрод, взвесить его и определить содержание меди. Затем отделить алюминий, определить его содержание. Таким способом хорошо отделять металлы с положительным значением стандартного электродного потенциала.

Все электроды делят на нерастворимые (инертные) – угольные, графитовые, платиновые, иридиевые. Растворимые – медь, серебро, цинк, кадмий, никель и другие. Понятие растворимого электрода имеет значение для анода, поскольку именно он способен растворяться при электролизе. На нерастворимом аноде в процессе электролиза происходит окисление анионов или молекул воды. При этом анионы бескислородных кислот достаточно легко окисляются. Если же в растворе присутствуют анионы кислородсодержащих кислот, то на аноде окисляются молекулы воды с выделением кислорода по реакции:

2Н 2 О – 4е = О 2 ­ + 4Н +

Растворимый анод при электролизе сам окисляется, отдавая электроны во внешнюю электрическую цепь и переходя в раствор:

А: Ме Û Ме n+ + nе –

Рассмотрим примеры электролиза расплавов и растворов электролитов.