Зачем нужна физика? Идеи для сочинения и не только. Просто о сложном

Когда я пишу тексты за своим столом, я могу протянуть руку вверх, чтобы включить лампу, или вниз, чтобы открыть ящик стола и достать ручку. Протянув руку вперёд, я касаюсь небольшой и странной на вид статуэтки, которую мне на счастье подарила сестра. Потянувшись назад, я могу похлопать чёрную кошку, крадущуюся у меня за спиной. Справа лежат заметки, сделанные во время исследований для статьи, слева - куча вещей, которые необходимо сделать (счета и корреспонденция). Вверх, вниз, вперёд, назад, вправо, влево - я управляю самим собой в моём личном космосе трёхмерного пространства. Невидимые оси этого мира налагает на меня прямоугольная структура моего кабинета, определяемая, как и большая часть западной архитектуры, тремя составленными вместе прямыми углами.

Наши архитектура, образование и словари сообщают нам о трёхмерности пространства. Оксфордский словарь английского языка так пространство: «непрерывная область или простор, свободная, доступная или не занятое ничем. Измерения высоты, глубины и ширины, в рамках которых существуют и движутся все вещи». [словарь Ожегова похожим образом: «Протяженность, место, не ограниченное видимыми пределами. Промежуток между чем-н., место, где что-н. вмещается.» / прим. перев. ]. В XVIII веке утверждал, что трёхмерное евклидово пространство является априорной необходимостью, и нам, пресыщенным изображениями, созданными компьютером, и видеоиграми, постоянно напоминают об этом представлении в виде вроде бы аксиоматичной прямоугольной системы координат. В точки зрения XXI века это кажется уже почти самоочевидным.

И всё же идея о жизни в пространстве, описываемом какой-то математической структурой - это радикальная инновация западной культуры, сделавшая необходимостью опровержение старинных верований по поводу природы реальности. Хотя зарождение современной науки часто описывают как переход к механизированному описанию природы, вероятно, более важным его аспектом - и однозначно более длительным - был переход к понятию о пространстве как о геометрической конструкции.

В прошлом веке задача описания геометрии пространства стала основным проектом теоретической физики, в котором эксперты, начиная с Альберта Эйнштейна, пытались описать все фундаментальные взаимодействия природы в виде побочных продуктов формы самого пространства. Хотя на локальном уровне нас приучили думать о пространстве как о трёхмерном, общая теория относительности описывает четырёхмерную Вселенную, а теория струн говорит о десяти измерениях - или об 11, если взять за основу её расширенный вариант, М-теорию. Существуют варианты этой теории с 26-ю измерениями, а недавно математики с энтузиазмом приняли , описывающую 24 измерения. Но что это за «измерения»? И что означает наличие десяти измерений в пространстве?

Чтобы прийти к современному математическому пониманию пространства, сначала необходимо подумать о нём как о некоей арене, которую может занимать материя. По меньшей мере, пространство необходимо представить себе, как нечто протяжённое. Такая идея, пусть и очевидная для нас, показалась бы еретической , чьи концепции представления физического мира преобладали в западном мышлении в поздней античности и в средневековье.

Строго говоря, аристотелева физика включала в себя не теорию пространства, а лишь концепцию места. Рассмотрим чашку чаю, стоящую на столе. Для Аристотеля чашка была окружённой воздухом, самим по себе представлявшим некую субстанцию. В его картине мира не было такой вещи, как пустое пространство - были только границы между веществами - чашкой и воздухом. Или столом. Для Аристотеля пространство, если вы хотите его так называть, было лишь бесконечно тонкой гранью между чашкой и тем, что её окружает. Баз протяжённости пространство не было чем-то таким, внутри чего может быть что-то другое.

С математической точки зрения, «измерение» - это всего лишь ещё одна координатная ось, ещё одна степень свободы, становящаяся символической концепцией, не обязательно связанной с материальным миром. В 1860-х пионер в области логики Огастес де Морган, чьи работы повлияли на Льюиса Кэрролла, подытожил эту становящуюся всё более абстрактной область, отметив, что математика - это чисто «наука о символах», и как таковая не обязана связываться с чем-либо, кроме самой себя. Математика, в каком-то смысле, это логика, свободно перемещающаяся на полях воображения.

В отличие от математиков, свободно играющих на полях идей, физики привязаны к природе, и, по крайней мере, в принципе, зависят от материальных вещей. Но все эти идеи приводят нас к освобождающей возможности - ведь если математика допускает количество измерений больше трёх, и мы считаем, что математика оказывается полезной для описания мира, откуда нам знать, что физическое пространство ограничено тремя измерениями? Хотя Галилей, Ньютон и Кант принимали длину, ширину и высоту как аксиомы, не может ли в нашем мире существовать больше измерений?

Опять-таки, идея Вселенной с количеством измерений больше трёх проникла в сознание общества через художественную среду, на этот раз - через литературные рассуждения, наиболее известной из которых служит работа математика “ ” (1884). Это очаровательная социальная сатира рассказывает историю скромного Квадрата, живущего на плоскости, к которому однажды в гости приходит трёхмерное существо лорд Сфера, выводящее его в великолепный мир трёхмерных тел. В этом рае объёмов Квадрат наблюдает за его трёхмерной версией, Кубом, и начинает мечтать о переходе в четвёртое, пятое и шестое измерение. Почему не гиперкуб? Или не гипер-гиперкуб, думает он?

К сожалению, в Флатландии Квадрата причисляют к лунатикам и запирают в сумасшедший дом. Одной из моралей истории, в отличие от более слащавых её экранизаций и адаптаций, является опасность, таящаяся в игнорировании социальных устоев. Квадрат, рассказывая о других измерениях пространства, рассказывает и о других изменениях бытия - он становится математическим чудаком.

В конце XIX и начале XX веков масса авторов (Герберт Уэллс, математик и автор НФ-романов , придумавший слово «тессеракт» для обозначения четырёхмерного куба), художников (Сальвадор Дали) и мистиков ( [русский оккультист, философ, теософ, таролог, журналист и писатель, математик по образованию / прим. перев. ] изучала идеи, связанные с четвёртым измерением и тем, чем может стать для человека встреча с ним.

Затем в 1905 году неизвестный тогда физик Альберт Эйнштейн опубликовал работу, описывающую реальный мир как четырёхмерный. В его «специальной теории относительности» время добавлялось к трём классическим измерениям пространства. В математическом формализме относительности все четыре измерения связаны вместе - так в наш лексикон вошёл термин «пространство-время». Такое объединение было не произвольным. Эйнштейн обнаружил, что используя этот подход, можно создать мощный математический аппарат, превосходящий физику Ньютона и позволяющий ему предсказывать поведение электрически заряженных частиц. Электромагнетизм можно полностью и точно описать только в четырёхмерной модели мира.

Относительность стала чем-то гораздо большим, чем просто ещё одной литературной игрой, особенно когда Эйнштейн расширил её от «специальной» до «общей». Многомерное пространство приобрело глубинное физическое значение.

В картине мира Ньютона материя движется через пространство во времени под влиянием естественных сил, в частности, гравитации. Пространство, время, материя и силы - различные категории реальности. С СТО Эйнштейн демонстрировал объединение пространства и времени, уменьшая количество фундаментальных физических категорий с четырёх до трёх: пространства-времени, материи и сил. ОТО делает следующий шаг, вплетая гравитацию в структуру самого пространства-времени. С четырёхмерной точки зрения, гравитация - всего лишь артефакт формы пространства.

Чтобы осознать эту примечательную ситуацию, представим её двумерный аналог. Представьте себе батут, нарисованный на поверхности декартовой плоскости. Теперь разместим на решётке шар для боулинга. Вокруг него поверхность натянется и исказится так, что некоторые точки отдалятся друг от друга сильнее. Мы исказили внутреннюю меру расстояния в пространстве, сделали её неровной. ОТО говорит, что именно такому искажению тяжёлые объекты, такие, как Солнце, подвергают пространство-время, и отклонение от декартового совершенства пространства приводит к появлению явления, которое мы ощущаем, как гравитацию.

В физике Ньютона гравитация появляется из ниоткуда, а у Эйнштейна она естественным образом возникает из внутренней геометрии четырёхмерного многообразия. Там, где многообразие наибольшим образом растягивается, или отходит от декартовой регулярности, гравитация ощущается сильнее. Это иногда называют «физикой резиновой плёнки». В ней огромные космические силы, удерживающие планеты на орбитах вокруг звёзд, а звёзды на орбитах в рамках галактик, являются ничем иным, как побочным эффектом искажённого пространства. Гравитация - это буквально геометрия в действии.

Если переход в четырёхмерное пространство помогает объяснить гравитацию, то будет ли какое-либо научное преимущество у пятимерного пространства? «Почему бы не попробовать?» - спросил в 1919 году молодой польский математик , размышляя над тем, что если Эйнштейн включил гравитацию в пространство-время, то, возможно, дополнительное измерение может схожим образом обращаться с электромагнетизмом, как с артефактом геометрии пространства-времени. Поэтому Калуца добавил дополнительное измерение к уравнениям Эйнштейна, и, к своему восторгу, обнаружил, что в пяти измерениях обе эти силы прекрасно оказываются артефактами геометрической модели.

Математика волшебным образом сходится, но в данном случае проблемой стало то, что дополнительное измерение никак не коррелировало с каким-либо определённым физическим свойством. В ОТО четвёртым измерением было время; в теории Калуцы оно не было чем-либо, что можно увидеть, почувствовать или на что можно указать: оно просто было в математике. Даже Эйнштейн разочаровался в такой эфемерной инновации. Что это? - спрашивал он; где оно?

Существует множество версий уравнений теории струн, описывающих десятимерное пространство, но в 1990-х математик из Института передовых исследований в Принстоне (старого логова Эйнштейна) показал, что всё можно немного упростить, если перейти к 11-мерной перспективе. Он назвал свою новую теорию «М-теория», и загадочно отказался объяснить, что обозначает буква «М». Обычно говорят, что она обозначает «мембрану», но кроме этого поступали и такие предложения, как «матрица», «мастер», «мистическая» и «монструозная».

Пока что у нас нет никаких свидетельств этих дополнительных измерений - мы всё ещё находимся в состоянии плавающих физиков, мечтающих о недоступных миниатюрных ландшафтах - но теория струн оказала мощное влияние на саму математику. Недавно разработки версии этой теории, имеющей 24 измерения, показали наличие неожиданной взаимосвязи между несколькими основными ответвлениями математики, что означает, что даже если теория струн не пригодится в физике, она станет полезным источником . В математике 24-мерное пространство особенное - там происходят волшебные вещи, к примеру, возможно упаковать сферы особенно элегантным образом - хотя маловероятно, что в реальном мире 24 измерения. Касательно мира, в котором мы живём и который мы любим, большинство специалистов по теории струн считают, что 10 или 11 измерений будет достаточно.

Внимания достойно ещё одно событие теории струн. В 1999 году (первая женщина, получившая пост в Гарварде в области теоретической физики) и (американский специалист по теоретической физике частиц индийского происхождения) , что дополнительное измерение может существовать на космологической шкале, на масштабах, описываемых теорией относительности. Согласно их теории «бран» (брана - это сокращение от мембраны) - то, что мы называем нашей Вселенной, может находиться в гораздо более крупном пятимерном пространстве, в чём-то вроде сверхвселенной. В этом сверхпространстве наша Вселенная может быть одной из целого ряда существующих вместе вселенных, каждая из которых представляет собой четырёхмерный пузырь на более широкой арене пятимерного пространства.

Сложно сказать, сможем ли мы когда-нибудь подтвердить теорию Рэндалл и Сандрума. Однако между этой идеей и зарёй современной астрономии уже проводят некоторые аналогии. 500 лет назад европейцы считали невозможным представить себе иные физические «миры» кроме нашего собственного, однако сейчас нам известно, что Вселенная заполнена миллиардами других планет, движущихся по орбитам вокруг миллиардов других звёзд. Кто знает, может когда-нибудь наши потомки смогут найти доказательства существования миллиардов других вселенных, у каждой из которых есть свои уникальные уравнения для пространства-времени.

Проект понимания геометрической структуры пространства - одно из характерных достижений науки, но может получиться так, что физики достигли конца этого пути. Оказывается, что Аристотель в каком-то смысле был прав - у идеи протяжённого пространства и правда есть логические проблемы. Несмотря на все необычайные успехи теории относительности, мы знаем, что её описание пространства не может быть итоговым, поскольку оно отказывает на квантовом уровне. За последние полвека физики безуспешно пытались объединить их понимание пространства на космологическом масштабе с тем, что они наблюдают на квантовом масштабе, и всё больше кажется, что такой синтез может потребовать радикально новой физики.

Эйнштейн после разработки ОТО провёл большую часть жизни, пытаясь «выразить все законы природы из динамики пространства и времени, низведя физику к чистой геометрии», как сказал недавно Робберт Дийкграаф , директор Института передовых исследований в Принстоне. «Для Эйнштейна пространство-время было естественным фундаментом бесконечной иерархии научных объектов». Как и у Ньютона, картина мира Эйнштейна ставит пространство во главу существование, делает его ареной, на которой всё происходит. Но на крохотных масштабах, где преобладают квантовые свойства, законы физики показывают, что такого пространства, к которому мы привыкли, может и не быть.

Некоторые физики-теоретики начинают высказывать мысль о том, что пространство может быть некоим возникающим явлением, следующим из чего-то более фундаментального, так, как температура возникает на макроскопическом масштабе в результате движения молекул. Как говорит Дийкграаф: «Текущая точка зрения считает пространство-время не точкой отсчёта, а итоговой финишной чертой, естественной структурой, появляющейся из сложности квантовой информации».

Ведущий сторонник новых способов представления пространства - космолог из Калтеха, недавно, что классическое пространство - это не «фундаментальная часть архитектуры реальности», и доказывающей, что мы неверно присваиваем такой особый статус его четырём, или 10, или 11 измерениям. Если Дийкграаф приводит аналогию с температурой, то Кэрролл предлагает нам рассмотреть «влажность», явление, проявляющееся оттого, что множество молекул воды собираются вместе. Отдельные молекулы воды не являются влажными, и свойство влажности появляется только тогда, когда вы соберёте множество их в одном месте. Точно так же, говорит он, пространство появляется из более базовых вещей на квантовом уровне.

Кэрролл пишет, что с квантовой точки зрения Вселенная «появляется в математическом мире с количеством измерений порядка 10 10 100 » - это десятка с гуголом нулей, или 10 000 и ещё триллион триллионов триллионов триллионов триллионов триллионов триллионов триллионов нулей. Сложно представить такое невозможно огромное количество, по сравнению с которым количество частиц во Вселенной оказывается совершенно незначительным. И всё же, каждое из них - отдельное измерение в математическом пространстве, описываемое квантовыми уравнениями; каждое - это новая «степень свободы», имеющаяся в наличии у Вселенной.

Даже Декарт был бы поражён тем, куда нас завели его рассуждения, и какая удивительная сложность скрывалась в таком простом слове, как «измерение».

Тема 1

« Предмет и метод физики. Измерения. Физические величины.»

Первые научные представления возникли давно - по-видимому, на самых ранних этапах истории человечества, отраженной в письменных источниках. Однако, физика как наука в своем современном виде берет начало со времен Галилео Галилея (1Галилей и его последователь Исаак Ньютон (1совершили революцию в научном познании. Галилей предложил в качестве основного метода исследования метод экспериментального познания, а Ньютон сформулировал первые законченные физические теории (классическая механика, классическая оптика, теория тяготения).

В своем историческом развитии физика прошла 3 этапа (смотри диаграмму).

Революционный переход от одного этапа к следующему связан со сломом старых базовых представлений об окружающем мире в связи с полученными новыми экспериментальными результатами.

Слово physis в буквальном переводе означает природа, то есть сущность, внутреннее основное свойство явления, какая-то скрытая закономерность, определяющая протекание, ход явления.

Физика - это наука о наиболее простых и вместе с тем наиболее общих свойствах тел и явлений. Физика - фундамент естествознания.

Связь физики со всеми остальными науками представлена на диаграмме.

В основании физики (как и любой естественной науки) лежат утверждения о материальности мира и существовании объективных устойчивых причинно-следственных связей между явлениями. Физика объективна, так как изучает реальные природные явления, но одновременно и субъективна вследствие сущности процесса познания, как отражения действительности.

По современным представлениям все, что нас окружает, представляет собой комбинацию небольшого количества так называемых элементарных частиц, между которыми возможны 4 различных вида взаимодействий. Элементарные частицы характеризуются 4 числами (квантовыми зарядами), значения которых определяют в какой вид взаимодействия может вступать рассматриваемая элементарная частица (Таблица 1.1).

Заряды

Взаимодействия

массовый

гравитационное

электрический

электромагнтное

барионный

лептонный

Такая формулировка обладает двумя важными свойствами:

Адекватно описывает наши современные представления об окружающем мире;

Достаточно обтекаема и с вряд ли придет в противоречие с новыми экспериментальными фактами.

Дадим краткие пояснения незнакомым понятиям, используемым в этих утверждениях. Почему мы говорим о так называемых элементарных частицах? Элементарные частицы в точном значении этого термина – первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя. Однако, большинство известных элементарных частиц не удовлетворяют строгому определению элементарности, поскольку являются составными системами. Согласно модели Цвейга и Гелл-Мана структурными единицами таких частиц являются кварки . В свободном состоянии кварки не наблюдаются. Необычное название «кварки» было заимствовано из книги Джеймса Джойса «Поминки по Финнигану», где встречается словосочетание «три кварка», которое слышится герою романа в кошмарном бреду. В настоящее время известно более 350 элементарных частиц, в основном нестабильных и их число постоянно растет.

Вы встречались с проявлением трех из этих взаимодействий, когда изучали явление радиоактивного распада (смотри схему внизу).

Вы ранее уже сталкивались с таким проявлением сильного взаимодействия как ядерные силы, удерживающие протоны и нейтроны внутри атомного ядра. Сильное взаимодействие вызывает процессы, протекающие с наибольшей, по сравнению с другими процессами, интенсивностью и приводит к самой сильной связи элементарных частиц. В отличие от гравитационного и электромагнитного сильное взаимодействие является короткодействующим: его радиус

Характерные времена сильного взаимодействия

Краткая хронология изучения сильного взаимодействия

1911 – атомное ядро

1932 – протонно-нейтронное строение

(, В. Гейзенберг)

1935 – пи-мезон (Юкава)

1964 – кварки (М. Гелл-Манн, Г. Цвейг)

70-е XX века - квантовая хромодинамика

80-е XX века - теория великого объединения

https://pandia.ru/text/78/486/images/image007_3.gif" width="47 height=21" height="21">Слабое взаимодействие ответственно за распады элементарных частиц, стабильных относительно сильного и электромагнитного взаимодействий. Эффективный радиус слабого взаимодействия не превышает Поэтому на больших расстояния оно существенно слабее электромагнитного, которое в свою очередь до расстояний меньше 1 Ферми слабее сильного взаимодействия. На расстояниях, меньших слабые и электромагнитные взаимодействия образуют единое электрослабое взаимодействие. Слабое взаимодействие вызывает очень медленно протекающие процессы с элементарными частицами, в том числе распады квазистабильных элементарных частиц, времена жизни которых лежат в диапазоне Несмотря на малую величину слабое взаимодействие играет очень важную роль в природе. В частности процесс превращения протона в нейтрон, в результате которого 4 протона превращаются в ядро гелия (основной источник выделения энергии внутри Солнца) обусловлен слабым взаимодействием.

Может ли быть открыто пятое взаимодействие? Однозначного ответа не существует. Однако, по современным представлениям все четыре вида взаимодействия являются различными проявлениями одного единого взаимодействия. Это утверждение составляет суть теории великого объединения .

Теперь обсудим, как формируется научное знание об окружающем нас мире.

Знанием называют те сведения, опираясь на которые мы можем уверенно планировать нашу деятельность на пути к цели, и деятельность эта непременно приводит к успеху. Чем сложнее цель, тем больше знания требуется для ее достижения.

Научное знание формируется в результате синтеза двух присущих человеку элементов деятельности: творчества и регулярного освоения окружающего пространства с помощью метода проб и ошибок (смотри диаграмму).

https://pandia.ru/text/78/486/images/image010_2.jpg" width="553" height="172 src=">

Физический закон - это долго живущая и «заслуженная» физическая теория. Только такие попадают в учебники и изучаются в общеобразовательных курсах.

Если опыт не подтвердил предсказание, то весь процесс необходимо начинать сначала.

« Хорошая » физическая теория должна удовлетворять следующим требованиям:

1) должна исходить из небольшого количества фундаментальных положений;

2) должна быть достаточно общей;

3) должна быть точной;

4) должна допускать возможность усовершенствования.

Ценность физической теории определяется тем насколько точно можно установить тот предел, за которым она несправедлива. Эксперимент не может подтвердить теорию, а может ее только опровергнуть .

Процесс познания может идти только через построение модели , что связано с субъективной стороной этого процесса (неполнота информации, многообразие любого явления, облегчение освоения с помощью конкретных образов).

Модель в науке - это не увеличенная или уменьшенная копия предмета, а картина явления, освобожденная от не существенных для поставленной задачи деталей.

Модели подразделяются на механические и математические.

Примеры: материальная точка, атом, абсолютно твердое тело.

Как правило, для большинства понятий процесс развития моделей идет путем постепенного усложнения от механических к математическим.

Рассмотрим этот процесс на примере понятия атома. Перечислим основные модели.

Шарик (атом древних и классической физики)

Шарик с крючком

Атом Томсона

Планетарная модель (Резерфорд)

Модель Бора

Уравнение Шредингера

https://pandia.ru/text/78/486/images/image012.gif" width="240" height="44">

Модель атома в виде твердого неделимого шарика при всей кажущейся с точки зрения сегодняшних представлений нелепости позволила, например, в рамках кинетической теории газов получить все основные газовые законы.

Открытие в 1897 году электрона привело к созданию Дж. Дж. Томпсоном модели, которую обычно называют «пудинг с изюмом» (смотри рисунок внизу).

https://pandia.ru/text/78/486/images/image014.gif" width="204" height="246">

Согласно этой модели в положительно заряженном «тесте» плавают отрицательно заряженные изюминки – электроны. Модель объясняла электронейтральность атома, одновременное возникновение свободного электрона и положительно заряженного иона. Однако, результаты опыта Резерфорда по рассеянию альфа частиц принципиально изменили представление о строении атома.

На представленной ниже картинке изображена схема установки в опыте Резерфорда.

В рамках модели Томпсона было невозможно объяснить сильное отклонение траектории движения альфа частиц и, поэтому, возникло понятие атомного ядра . Проведенные расчеты позволили определить размеры ядра, они оказались порядка одного Ферми. Таким образом, на смену модели Томпсона пришла планетарная модель Резерфорда (смотри картинку внизу).

Это типично механическая модель, поскольку атом представляется как аналог солнечной системы: вокруг ядра – Солнца по круговым траекториям движутся планеты – электроны. Известный советский поэт Валерий Брюсов так отозвался об этом открытии

Еще быть может, каждый атом –

Вселенная, где сто планет;

Там всё, что здесь, в объёме сжатом,

Но также то, чего здесь нет.

С момента возникновения планетарная модель подвергалась серьёзной критике в связи с её нестабильностью. Движущийся по замкнутой орбите электрон должен излучать электромагнитные волны и, следовательно, упасть на ядро. Точные расчеты показывают, что максимальное время жизни атома в модели Резерфорда не больше 20 минут. Великий датский физик Нильс Бор для спасения идеи атомного ядра создал новую модель атома, носящую его имя. Она основана на двух основных положениях (постулатах Бора):

Атомы могут длительное время находится только в определенных, так называемых стационарных состояниях. Энергии стационарных состояний образуют дискретный спектр. Иначе говоря, возможны только круговые орбиты с радиусами, задаваемыми соотношением

https://pandia.ru/text/78/486/images/image018.gif" width="144" height="49">

где n – целое число.

При переходе из одного начального квантового состояния в другое происходит излучение или поглощение кванта света (смотри рисунок).

https://pandia.ru/text/78/486/images/image020.gif" width="240" height="238">

Дифференциал" href="/text/category/differentcial/" rel="bookmark">дифференциальное уравнение в частных производных относительно волновой функции Физический смысл имеет не сама волновая функция, а квадрат ее модуля, который пропорционален вероятности нахождения частицы (электрона) в данной точке пространства. Иначе говоря, электрон при своем движении как бы «размазан» по всему объему, образуя электронное облако, плотность которого характеризует вероятности нахождения электрона в различных точках объема атома (смотри рисунки снизу).

https://pandia.ru/text/78/486/images/image025_0.gif" width="379" height="205">

К сожалению, язык, которым мы пользуемся в нашей повседневной жизни, непригоден для описания процессов, происходящих в глубинах материи (применяются оень абстрактные модели). Физики «беседуют» с Природой на языке математики с помощью чисел, геометрических фигур и линий, уравнений, таблиц, функций и т. д. Такой язык обладает удивительной предсказательной силой: оперируя формулами, можно получить следствия (как в математике), оценить результат количественно и проверить затем опытом справедливость предсказания. За изучение явлений, которые нельзя описать на языке физики из-за неопределенности понятий, невозможности определить процесс измерения, физики просто не берутся.

История развития физики показала, что разумное использование математики неизменно приводило к мощному прогрессу в исследовании природы, а попытки абсолютизировать какой-то математический аппарат как единственно пригодный ведут к застою.

Физика как любая наука может ответить только на вопрос «Как?», но не на вопрос «Почему?».

Наконец, рассмотрим заключительную часть темы №1 о физических величинах.

Физическое понятие, отражающее какое-то свойство тел и явлений и выражаемое числом в процессе измерения называется физической величиной.

Физические величины в зависимости от способа их представления подразделяются на скалярные, векторные, тензорные и т. д. (смотри Таблицу 1.2).

Таблица 1.2

величины

примеры

скалярные

температура, объем, давление

векторные

скорость, ускорение, напряженность

тензорные

давление в двигающейся жидкости

https://pandia.ru/text/78/486/images/image027_0.gif" width="73" height="75 src=">

Вектором называется упорядоченный набор чисел (смотри иллюстрацию сверху). Тензорные физические величины записываются с помощью матриц.

Также все физические величины можно разделить на основные и производные от них. К основным относятся единицы измерения массы, электрического заряда (основные характеристики материи, обуславливающие гравитационное и электромагнитное взаимодействие), длины и времени (так как отражают фундаментальные свойства материи и ее атрибутов – пространства и времени), а также температуры, количества вещества и силы света. Для установления производных единиц используют физические законы, связывающие их с основными единицами.

В настоящее время обязательна к применению в научной и учебной литературе Международная система единиц (СИ ), где в качестве основных единиц используются килограмм, Ампер, метр, секунда, Кельвин, моль и Кандела. Причиной замены в качестве основной единицы Кулона (электрический заряд) на Ампер (сила электрического тока) чисто техническая: реализация эталона в 1 Кулон в отличие от 1 Ампера практически невозможна, а сами единицы связаны простым соотношением:

Основы метрологии

учебное пособие

«Три пути ведут к познанию:

путь размышления – самый благородный;

путь подражания – самый легкий;

путь опыта – самый трудный»

Конфуций

С 32 Ю. П. Щербак Основы метрологии:

Учебное пособие для вузов.

Рассматриваются основные понятия и положения метрологии, основные понятия теории погрешностей, обработки результатов измерений, классификации сигналов и помех. Для студентов вузов, обучающихся по естественно-научным и техническим специальностям.

© Ю. П. Щербак, 2007

Глава 1 . Предмет и задачи метрологии……………………………………………………….4

1.1 Предмет метрология………………………………………………………………………....4

1.2 Роль измерений в развитии науки, промышленности…………………………………….4

1.3 Достоверность научного знания…………………………………………………………..16

Глава 2 . Основные положения метрологии………………………………………………....23

2.1 Физические величины……………………………………………………………………...23

2.2 Система физических величин и их единиц……………………………………………….30

2.3 Воспроизведение единиц физических величин и передача их размеров………………35

2.4 Измерение и его основные операции……………………………………………………..39

Глава 3 . Основные понятия теории погрешностей………………………………………....49

3.1 Классификация погрешностей…………………………………………………………….52

3.2 Систематические погрешности…………………………………………………………....58

3.3 Случайные погрешности…………………………………………………………………..62

3.3.1 Общие понятия…………………………………………………………………………...62

3.3.2 Основные законы распределения……………………………………………………….64

3.3.3 Точечные оценки параметров законов распределения………………………………...67

3.3.4 Доверительный интервал (доверительные оценки)…………………………………....69

3.3.5 Грубые погрешности и методы их исключения………………………………………..71

Глава 4 . Обработка результатов измерений………………………………………………....72

4.1 Однократные измерения…………………………………………………………………..72

4.2 Многократные равноточные измерения……………………………………………….....73

4.3 Косвенные измерения……………………………………………………………………..75

4.4 Некоторые правила выполнения измерений и представление результатов…………...77

Глава 5 . Измерительные сигналы…………………………………………………………...79

5.1 Классификация сигналов………………………………………………………………….79

5.2 Математическое описание сигналов. Параметры измерительных сигналов………….81

5.3 Дискретные сигналы……………………………………………………………………...86

5.4 Цифровые сигналы………………………………………………………………………..89

5.5 Помехи……………………………………………………………………………………..91

Литература……………………………………………………………………………………109



Глава 1. Предмет и задачи метрологии

Предмет метрология

Метрология – наука об измерениях, методах, средствах обеспечения их единства и способах достижения требуемой точности (ГОСТ 16263-70).

Греческое слово «метрология» состоит из 2-х слов «метрон» - мера и «логос» - учение.

Предметом метрологии – является извлечение количественной информации о свойствах объектов и процессов с заданной точностью и достоверностью.

Средства метрологии – это совокупность средств измерений и метрологических стандартов, обеспечивающих их рациональное использование.

Без измерений не может обойтись ни одна наука.

Основное понятие метрологии – измерение.

Измерение – это нахождение значения физической величины (ФВ)

Опытным путем с помощью специальных технических средств (ГОСТ 16263-70).

Измерения могут быть представлены тремя аспектами [Л.1]:

  • Философский аспект измерения : измерения являются важнейшим универсальным методом познания физических явлений и процессов
  • Научный аспект измерения : с помощью измерений (эксперимента) осуществляется связь теории и практики («практика – критерий истины»)
  • Технический аспект измерений : измерения обеспечивают получение количественной информации об объекте управления или контроля.

Роль измерения в развитии науки, промышленности.

Приведем высказывания известных ученых о роли измерений [Л.3].

В. Томпсон : «Я часто говорю, что когда вы можете измерить то, о чем вы говорите и можете выразить это в числах, то вы кое-что знаете об этом; но когда вы не можете измерить это, не можете выразить это в числах, то ваши знания будут жалкого и неудовлетворительного рода; это может представлять собой начало знания, но в ваших мыслях вы едва придвинулись к тому, что заслуживает название науки, каков бы ни был предмет исследования» (Строение материи, 1895г.)

А. Ле Шателье : «Выучиться правильно измерять – одно из наиболее важных, но и наиболее трудно осуществимых этапов науки. Достаточно одного ложного измерения для того, чтобы помешать открытию закона и, что еще хуже, привести к установлению несуществующего закона. Таково было, например, происхождение закона о непредельных соединениях водорода и кислорода, основанных на экспериментальных ошибках в измерениях Бунзена» (Наука и промышленность, 1928г.).

Проиллюстрируем первую часть высказывания А. Ле Шателье примерами некоторых важных измерений в области механики и гравитации за последние ~ 300 лет и их влияние на развитие науки и техники.

  1. 1583 г. – Г. Галилей установил изохронность колебаний маятника.

Изохронность колебаний маятника явилась основой создания новых часов – хронометров, которые стали важнейшим инструментом навигации в эпоху великих географических открытий (измерение времени полудня в точке нахождения корабля по сравнению с портом отплытия давало возможность определить долготу, измерения высоты Солнца над горизонтом в полдень – широту …)

(Период колебаний маятника: - угловая скорость; период колебаний не зависит от массы и амплитуды колебаний – изохронность).

  1. 1604 г. – Г. Галилей установил равноускоренность движения тела по наклонной плоскости
  2. 1619 г. – И. Кеплер сформулировал на основе измерений III закон движения планет: Т 2 ~ R 3 (Т – период, R – радиус орбиты)
  3. 1657 г. – Х. Гюйгенс сконструировал маятниковые часы со спусковым механизмом (анкер)
  4. 1678 г. – Х. Гюйгенс измерил величину силы тяжести для Парижа (g = 979,9 см/с 2)
  5. 1798 г. – Г. Кавендиш измерил с помощью крутильных весов силу притяжения двух тел и определил гравитационную константу в законе Ньютона, определил среднюю плотность Земли (5,18 г/см 3)

Создание Х. Гюйгенсом точных часов со спусковым механизмом (анкер) стало основой измерительной техники; а измерение силы тяжести – основой баллистики.

В результате этих экспериментов были сформулированы 3-й закон движения планет И. Кеплера, закон всемирного тяготения (И. Ньютон) – основа всей современной деятельности человека, связанной с космосом.

  1. 1842 г. – Х. Доплер предположил влияние относительного движения тел на частоту звука (эффект Доплера, в 1848 г. А. Физо распространил этот принцип на оптические явления)

Сдвиг частоты из-за относительного движения источника и приемника звука или света (Х. Доплер, А. Физо) явился основой для создания модели расширяющейся Вселенной (Э. Хаббл). Измерение реликтового излучения (А. Пензиас и Р. Вильсон) – решающее свидетельство справедливости модели расширяющейся Вселенной, начало которой имело форму «Большого взрыва».

Современные представления :

Первая («инфляционная») стадия расширения Вселенной продолжалась всего ~ 10 -35 секунды. За это время появившийся из абсолютного ничто «зародыш» Вселенной увеличился до 10 100 раз. Согласно современным представлениям рождение Вселенной из сингулярности в результате Большого взрыва обусловлено квантовой флуктуацией вакуума. При этом уже в момент Большого взрыва в квантовых флуктуациях вакуума были заложены разнообразные свойства и параметры, в т.ч. фундаментальные физические константы (ε, h, γ, k и т.д.)

Если бы к моменту Т 0 =1с скорость разлета вещества отличалась от реального значения на 10 -18 (10 -16 %) доли своей величины в ту или другую сторону, то Вселенная либо сколапсировалась в материальную точку, либо вещество полностью рассеялось.

Современное естествознание базируется на многократном наблюдении факта, повторение его в различных условиях – эксперименте, его количественном описании; создание модели этого факта, явления или процесса, установление формул, зависимостей, связей. Одновременно развиваются практические применения явления. Далее возникает (создается) фундаментальная теория. Такая теория предлагает обобщение и устанавливает связи данного явления с другими явлениями или процессами; в настоящее время часто проводится математическое моделирование явления. На основе фундаментальной теории возникают новые, более широкие применения.

На рис. 1.1 приведена условная схема методологии естествознания [Л.2]

Новые практические применения

Рис. 1.1

На примере экспериментально открытого Х. Доплером влияния относительного движения тел на частоту звука можно проследить этапы этой методологической схемы

1 этап .

Проблемы регистрации факта, точности измерений для последующего количественного описания, выбор единиц измерений. (Эксперимент)

Пример : Х. Доплер зафиксировал (измерил) в 1842 году влияние относительного движения тел на частоту звука (эффект Доплера).

2 этап .

Установление зависимости, формул, связей, включая анализ размерности величин, установление констант. (Модель)

Пример : На основании опытов Х. Доплера разработана модель явления:

звук – это продольные колебания воздуха; при движении источника изменяется число колебаний, принимаемых приемником в 1 с., т.е. меняется частота.

Этап.

Пример : Разработка приборов на эффекте Доплера: эхолокаторы, измерители скорости движущихся тел (локатор ГИБДД).

Этап.

Формулировка принципов и обобщения, создание фундаментальной теории, выяснение связей с другими явлениями, прогнозы (включая математическое моделирование). (Фундаментальная теория).

Пример : Сформулированы принципы относительности Галилея, затем Эйнштейна:

равноправие всех инерциальных систем отсчета.

Этап.

Анализ широкого круга явлений, поиск закономерностей в других областях физики. (Другие явления).

Пример : В 1848 году А. Физо распространил принцип Доплера на оптические явления:

Свет– это поперечные колебания электромагнитного поля, поэтому применим эффект Доплера и для света (эффект ФИЗО).

6 этап .

Создание новых устройств, применение в других областях. (Новые практические применения).

Пример :

§ Измерение расстояний в космологии по красному смещению излучения далеких Галактик

§ Сдвиг частоты из-за относительного движения источника и приемника излучения явилось основой для создания модели расширяющейся Вселенной (Э. Хаббл)

§ Измерение реликтового излучения (А. Пензиас и Р. Вильсон) явилось свидетельством справедливости модели расширяющейся Вселенной, начало которой имело форму «Большого взрыва».

Создание измерительного прибора или выработка метода измерений – важнейший шаг к обнаружению новых явлений и зависимостей. В наше время очень мало шансов открыть что-либо существенно новое, не прибегая к точной аппаратуре: все новое, ставшее известным за последнее время, не далось в результате простого невооруженного наблюдения над обыденным кругом явлений повседневной жизни, как это бывало у истоков науки.

Однако важно на первых этапах общего прощупывания не прибегать к чрезмерно тонкой технике эксперимента – излишнее усложнение вызывает задержки и уводит в густую чащу вспомогательных деталей, отвлекающих от основного.

Умение обходиться простыми средствами всегда ценится исследователями.

Каждый исследователь должен считаться с общепринятыми системами мер, должен хорошо разбираться в соотнесении производных единиц с принятыми за основные, т.е. в размерности. Понятие о системах единиц и о размерностях должно быть настолько ясным, чтобы были совершенно исключены такие «студенческие» случаи, когда размерности левой и правой частей уравнения различны, или величины – в разных системах единиц.

Когда принципиальный путь измерения установлен, стремятся повысить точность измерения. Каждый имеющий дело с измерениями должен быть знаком с приемами оценки точности результатов. Если исследователь неопытен, он редко умеет ответить на вопрос о том, какова точность произведенного им измерения, не отдает себе отчета ни в том, какой точности он должен в своей задаче добиваться, ни в том, что именно лимитирует его точность. Напротив, опытный исследователь умеет выразить в цифрах точность каждого своего измерения, а если получаемая точность оказывается ниже требуемой, он может заранее сказать – какой из элементов измерения окажется наиболее существенным улучшать.

Если не задают себе подобных вопросов, происходят неприятные случаи даже со сведущими людьми; например, профессор Московского университета Лейст на протяжении 20 лет строил карту магнитной аномалии, в которой измерения магнитного поля были точными, но координаты точек измерения не были соответственной точности, так что не оказалось возможности надежно определить градиенты составляющих напряженности поля, необходимые для оценки массы, залегающей под землей. В результате, всю работу пришлось повторить.

Как бы не стремился исследователь к точности измерения, все же он столкнется с неизбежными погрешностями результатов измерений.

Вот что говорил по этому поводу еще в 1903 году А. Пуанкаре («Гипотеза и наука»): «Представим себе, что мы измеряем некоторую длину неверным метром, например, слишком длинным по сравнению с нормальным. Получившееся число, выражающее измеряемую длину, всегда будет несколько менее истинного, и эта ошибка не устранится, сколько бы мы не повторяли измерение; это пример систематической ошибки. Но измеряя нашу длину верным метром, мы тем не менее не избежим ошибок, например от того, что неверно прочтем число делений; но эти ошибочные наблюдения могут быть и более или менее истинной величины, так что если мы произведем большое число наблюдений и возьмем среднее из них, то ошибка будет близка к нулю; вот пример случайных ошибок».

«Наиболее тяжелы систематические погрешности, источник происхождения которых еще неизвестен. Когда с ними сталкиваются в работе – это катастрофа. У одного ученого явилась мысль построить психрометр с помощью крысиного пузыря. Сжатие пузыря вызывало подъем ртути капиллярной трубке и отражало гидротермическое состояние воздуха. Было постановлено, чтобы все суда английского флота в течении года производили по всему свету соответствующие измерения. Таким путем надеялись построить полную психрометрическую карту всего мира. Когда работа была закончена, оказалось, что способность крысиного пузыря к сокращению сильно изменилась за год, причем изменялась неравномерно, в зависимости от климата, в котором он находился. И вся огромная работа пропала даром». (Ле Шателье, Наука и промышленность).

Этот пример показывает, что систематические ошибки могут представлять собой наложение незамеченного побочного явления на измеряемое – это разъясняет их характер и опасность.

Систематические погрешности присутствуют в любом эксперименте. Источников их множество – это неточность калибровки прибора, «сбитая» шкала, влияние прибора на объект исследования и мн. другое.

Пример , иллюстрирующий влияние прибора на исследуемую схему (рис.1.2).


Необходимо измерить с помощью

амперметра А ток в нагрузке.

Рис. 1.2

Реальный амперметр имеет внутреннее сопротивление r А. (Сопротивление рамки у амперметра магнитоэлектрической или электромагнитной системы).

Если мы знаем величину r А (она всегда приводится в технических характеристиках прибора) то систематическую погрешность легко рассчитать и учесть поправкой.

Пусть r А =1.Ом,

Тогда эквивалентная схема будет иметь вид:

В идеальной схеме (r А = 0)

В реальной схеме(с включенным

прибором)

I Нх =

Рис 1.3

Погрешность измерения (абсолютная) равна:

Относительная систематическая погрешность равна: (!).

Если прибор (амперметр) имеет класс точности 1,0 % и мы не будем учитывать влияние прибора на точность эксперимента, то ошибка измерения будет почти на порядок превышать ожидаемую погрешность (обусловленную классом точности прибора). Вместе с тем, зная природу систематической погрешности, ее легко учесть (в главе 3 будут подробно рассмотрены причины появления систематических погрешностей и способы их компенсации).

В нашем примере, зная величину r А легко рассчитать эту погрешность

() и ввести в результат соответствующую поправку (D n = - D сист):

Iн = Iн х + D n = 2,73А +0,27А=3,00А

Совершенно иной характер имеют случайные ошибки, о которых говорил Пуанкаре.

Случайность в науке и технике обычно рассматривается как враг, как досадная помеха, препятствующая точному измерению. Люди давно вступили в борьбу со случайностью.

Долгое время считалось, что случайности связаны просто с нашим незнанием причин, их вызывающих. Характерно в этом смысле высказывание известного русского ученого К. А. Тимирязева.

«…Что такое случай? Пустое слово, которым прикрывается невежество, уловка ленивого ума. Разве случай существует в природе? Разве он возможен? Разве возможно действие без причины?» («Краткий очерк Теории Дарвина»).

Действительно, если выявить все причины случайного события, то можно случайность устранить. Но это – однобокое понятие, здесь случайность отождествляется с беспричинностью . Здесь и кроется заблуждение великого ученого.

Всякое событие имеет вполне определенную причину, в том числе и случайное событие. Хорошо, когда цепь причин и следствий проста, легко просматривается. В этом случае событие нельзя считать случайным. Например, на вопрос: упадет брошенная монета на пол или на потолок – можно ответить определенно, случайности здесь нет.

Если же цепь причин и следствий сложна и не поддается обозрению, то событие становится непредсказуемым и называется случайным .

Например: упадет ли подбрасываемая монета вверх цифрой или гербом – можно точно описать цепью причин и следствий. Но проследить такую цепь практически невозможно. Выходит, хотя причина и есть – предсказать результат мы не можем – он случаен.

«Никто не обнимет необъятного»

(К. Прутков)

Рассмотрим задачу, которая может служить отличным примером относительности наших знаний и хорошо иллюстрирует афоризм К. Пруткова.

Задача : На столе лежит знаменитое Ньютоновское яблоко.

Что нужно было бы принять во внимание, чтобы вычислить абсолютно точно ту силу, с которой яблоко в данный момент давит на стол?

Решение абстрактное :

Сила F , с которой яблоко давит на стол, равна весу яблока P:

Если яблоко весит 0,2 кг, то и F = 0,2 кг.с = 0,2 х 9,80665Н = 1,96133Н(система СИ).

Перечислим все причины, влияющие на давление яблока в данное мгновение на стол.

Итак: F = P = mg ., где m – масса яблока, g – ускорение свободного падения.

В итоге мы имеем 4 элемента, на которые могут влиять внешние факторы.

1 . Масса яблока m .

На него влияют:

§ Испарение воды под действием тепла, солнечных лучей;

§ Выделение и поглощение газов из-за продолжающихся химических реакций (созревание, гниение, фотосинтез);

§ Вылет электронов под действием солнечных лучей, рентгеновского и γ излучений;

§ Поглощение электронов, протонов и др. квантов;

§ Поглощение радиоволн и мн. др.

2. Ускорение свободного падения g меняется и в пространстве, и во времени.

§ В пространстве : зависит от географической широты, высоты над уровнем моря (яблоко – несимметрично, от его положения – центр массы, т.е. высота; земной шар – неоднороден, и т.д.

§ Во времени : g меняется: непрерывное перемещение масс внутри Земли, перемещение морских волн, возрастание массы Земли за счет метеоритной пыли и т.д.

3. Если выражение P = mg – точное, но тогда неверно равенство F = P, т. к. кроме Земли, на яблоко действует Луна, Солнце, другие планеты, центробежные силы инерции, вызванные вращением Земли и т.д.

4. Верно ли равенство F = P ?

§ Нет, т.к. оно не учитывает, что яблоко «плавает» в воздухе и поэтому из Р нужно вычесть силу Архимеда, которая сама меняется вместе с атмосферным давлением;

§ Нет, потому что на яблоко действуют переменные силы конвекции нагретого и холодного воздуха;

§ Нет, потому что на яблоко давят солнечные лучи;

и т.д., и т.п.

Вывод:

Всякая физическая задача бесконечно сложна , потому что на всякое физическое тело действуют одновременно все законы физики, в том числе и еще не открытые!

Физическая задача может быть решена лишь приближенно . И в зависимости от той точности, которая требуется в конкретной ситуации.

Случайность можно исследовать и нужно. Именно поэтому еще в XVII в. были заложены основы теории вероятностей – наука о случайных событиях. Это и является вторым направлением в борьбе со случайностью. Оно имеет своей целью изучение закономерности в случайных событиях. Знание закономерностей дает возможность вести эффективную борьбу с непредсказуемостью случайных событий.

Итак, можно сказать:

Случайность – это, прежде всего, непредсказуемость, которая является результатом нашего невежества, результатом нашего незнания, результатом отсутствия необходимой информации.

С этой точки зрения Тимирязев совершенно прав.

Всякое событие (Б) является следствием малого или большого ряда причин (А 1 А 2 ,…)

Рис. 1.4

Если причин очень много – интересующее нас событие нельзя предсказать точно, оно станет случайным, непредсказуемым. Здесь случайность образуется за счет недостаточного знания.

Означает ли это, что в одно прекрасное время, когда мы станем уж очень умными, случайность исчезнет с нашей планеты? Вовсе нет. Этому будут препятствовать по крайней мере три обстоятельства, которые надежно защищают случайность.

Измерение (физика)

Измерение - совокупность операций для определения отношения одной (измеряемой) величины к другой однородной величине, принятой за единицу, хранящуюся в техническом средстве (средстве измерений). Получившееся значение называется числовым значением измеряемой величины, числовое значение совместно с обозначением используемой единицы называется значением физической величины. Измерение физической величины опытным путём проводится с помощью различных средств измерений - мер , измерительных приборов , измерительных преобразователей , систем, установок и т. д. Измерение физической величины включает в себя несколько этапов: 1) сравнение измеряемой величины с единицей; 2) преобразование в форму, удобную для использования (различные способы индикации).

  • Принцип измерений - физическое явление или эффект, положенное в основу измерений.
  • Метод измерений - приём или совокупность приёмов сравнения измеряемой физической величины с её единицей в соответствии с реализованным принципом измерений. Метод измерений обычно обусловлен устройством средств измерений.

Характеристикой точности измерения является его погрешность Примеры измерений

  1. В простейшем случае, прикладывая линейку с делениями к какой-либо детали, по сути сравнивают её размер с единицей, хранимой линейкой, и, произведя отсчёт, получают значение величины (длины, высоты, толщины и других параметров детали).
  2. С помощью измерительного прибора сравнивают размер величины, преобразованной в перемещение указателя, с единицей, хранимой шкалой этого прибора, и проводят отсчёт.

В тех случаях, когда невозможно выполнить измерение (не выделена величина как физическая и не определена единица измерений этой величины) практикуется оценивание таких величин по условным шкалам, например, Шкала Рихтера интенсивности землетрясений , Шкала Мооса - шкала твёрдости минералов

Наука, предметом изучения которой являются все аспекты измерений, называется метрологией .

Классификация измерений

По видам измерений

  • Прямое измерение - измерение, при котором искомое значение физической величины получают непосредственно.
  • Косвенное измерение - определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной.
  • Совместные измерения - проводимые одновременно измерения двух или нескольких неодноименных величин для определения зависимости между ними.
  • Совокупные измерения - проводимые одновременно измерения нескольких одноименных величин, при которых искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях.

По методам измерений

  • Метод непосредственной оценки - метод измерений, при котором значение величины определяют непосредственно по показывающему средству измерений
  • Метод сравнения с мерой - метод измерений, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой.
    • Нулевой метод измерений - метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля.
    • Метод измерений замещением - метод сравнения с мерой, в котором измеряемую величину замещают мерой с известным значением величины.
    • Метод измерений дополнением - метод сравнения с мерой, в котором значение измеряемой величины дополняется мерой этой же величины с таким расчетом, чтобы на прибор сравнения воздействовала их сумма, равная заранее заданному значению
    • Дифференциальный метод измерений - метод измерений, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, и при котором измеряется разность между этими двумя величинами

По назначению

Технические и метрологические измерения

По точности

Детерминированные и случайные

По отношению к изменению измеряемой величины

Статические и динамические

По числу измерений

Однократные и многократные

По результатам измерений

  • Абсолютное измерение - измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.
  • Относительное измерение - измерение отношения величины к одноимённой величине, играющей роль единицы, или измерение изменения величины по отношению к одноимённой величине, принимаемой за исходную.

История

Единицы и системы измерения

Литература и документация

Литература

  • Кушнир Ф. В. Радиотехнические измерения : Учебник для техникумов связи - М.: Связь, 1980
  • Нефедов В. И., Хахин В. И., Битюков В. К. Метрология и радиоизмерения : Учебник для вузов - 2006
  • Н. С. Основы метрологии : практикум по метрологии и измерениям - М.: Логос, 2007

Нормативно-техническая документация

  • РМГ 29-99 ГСИ. Метрология. Основные термины и определения
  • ГОСТ 8.207-76 ГСИ. Прямые измерения с многократными наблюдениями. Методы обработки результатов наблюдений. Основные положения

Ссылки

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Измерение (физика)" в других словарях:

    Измерение: В математике (а также в теоретической физике): Количество измерений пространства определяет его размерность. Измерение любая из координат точки или точечного события. В физике: Измерение (физика) определение значения физической… … Википедия

    Представление свойств реальных объектов в виде числовой величины, один из важнейших методов эмпирического познания. В самом общем случае величиной называют все то, что может быть больше или меньше, что может быть присуще объекту в большей или… … Философская энциклопедия

    Содержание 1 Методы получения 1.1 Испарение жидкостей … Википедия

    Примеры разнообразных физических явлений Физика (от др. греч. φύσις … Википедия

    У этого термина существуют и другие значения, см. Измерение (значения). Квантовая механика … Википедия

    Исследование влияния, оказываемого на вещество очень высокими давлениями, а также создание методов получения и измерения таких давлений. История развития физики высоких давлений удивительный пример необычайно быстрого прогресса в науке,… … Энциклопедия Кольера

    Слабые измерения являются типом квантово механического измерения, где измеряемая система слабо связана с измерительным прибором. После слабого измерения указатель измерительного прибора оказывается смещённым на так называемую «слабую величину». В … Википедия

    Нейтронная физика раздел физики элементарных частиц, занимающийся исследованием нейтронов, их свойств и структуры (времени жизни, магнитного момента и др.), методов получения, а также возможностями использования в прикладных и научно… … Википедия

    Кибернетическая физика область науки на стыке кибернетики и физики, изучающая физические системы кибернетическими методами. Под кибернетическими методами понимаются методы решения задач управления, оценивания переменных и параметров… … Википедия

    У этого термина существуют и другие значения, см. Оператор. Квантовая механика … Википедия

Книги

  • Физика: колебания и волны. Лабораторный практикум. Учебное пособие для прикладного бакалавриата , Горлач В.В.. В учебном пособии представлены лабораторные работы по темам: вынужденные колебания, колебания груза на пружине, волны в упругой среде, измерение длины звуковой волны и скорости звука, стоячие…
Вообще говоря, весь менеджмент и процесс принятия решений в высшей степени зависят от информации о текущем состоянии и о его развитии во времени. Измерение - важнейший источник этой информации. Когда обсуждается совершенствование бизнес-процессов, измерение уровня показателей процесса - важный и необходимый элемент. Оно должно дать информацию о том, насколько хорошо этот процесс реализуется и насколько хороши результаты, которые он дает. Наличие значимой и относящейся к делу информации о процессах дает возможность определить отправную точку для начала процесса совершенствования, что в свою очередь позволяет: идентифицировать процессы или области, которые нуждаются в совершенствовании; составить представления о направлении развития с течением времени, т.е. о тренде показателей; сравнить уровень собственных показателей с уровнем показателей других организаций; оценить, дают ли начатые (или уже завершенные) проекты какой-либо результат или возможен ли результат в будущем? основываясь на этом, оценить, какими инструментами стоит пользоваться в будущем для совершенствования.

Смысл вышесказанного заключается в одной фразе: «Нельзяуправлять тем, чего нельзя измерить».
Вот важнейшие положения об измерениях. «Что измерил, то и получил». Это означает, что, как правило, именно тем участкам работы, на которых проводился мониторинг и выполнялись измерения, в первую очередь уделяется внимание, для них изыскиваются ресурсы; «Измерения определяют поведение». Это означает, что выполнение измерений часто ведет к переменам в системе, к ее приспособлению к новым ориентирам.
Ранее отмечалось, что обычно компании делятся на функциональные отделы. Доминирующее направление мониторинга показателей - оценка финансовых параметров, которые, как правило, берутся прямо из бухгалтерской отчетности. Проблема заключается в том, что такие способы мониторинга часто вступают в прямое противоречие с процессом совершенствования и мешают проведению соответствующих мероприятий. Дело в том, что многие усилия по совершенствованию бывает очень трудно адекватно оценить обычным инвестиционным анализом. Как правило затраты нужны как для обучения, так и собственно для проведения проекта. А вот результаты совершенствования в значительной степени имеют операционный характер. Например, это сокращение времени, снижение доли дефектов и т.д. Этим показателям бывает очень трудно дать оценку в финансовых терминах, так как результат таких улучшений проявляется не сразу, а по истечении некоторого времени, т.е. в будущем. Поэтому бывает трудно добиться выделения ресурсов и времени для проектов совершенствования.
В последние годы разработки были направлены на создание более оперативных систем измерения показателей. Однако общие вопросы измерения показателей и интенсификация этих процессов лежат за рамками этой книги. Для поддержки подхода к улучшениям, рассматриваемого в этой книге, надо создать систему со следующими элементами: Непрерывное измерение соответствующих аспектов показателей основных бизнес-процессов, примерно 15-30 процессов. Что подразумевается под «соответствующими аспектами» - обсуждается далее в этой главе. Все эти измеряемые показатели вместе должны образовывать законченную и целостную приборную панель, которую можно использовать для непрерывно го мониторинга показателей. В отличие от допотопного «рубильника» финансового отдела, который с большим запаздыванием то включает, то выключает красный свет, предупреждая о прибыли или об убытках, новая приборная панель будет содержать комплекс измерительных приборов, по которым можно оценить реальное положение дел (см. рис. 4.1). Эта приборная панель укажет на любые возникающие негативные тренды, покажет развитие во времени, поможет определить предпосылки для проведения конкретных усилий по совершенствованию.
Однако нужно быть осторожным и не переусердствовать с измерениями.

Рис. 4.1. Различные измерительные системы

Пример.
Компания Xerox (США) и компания Rank Xerox в Европе, каждая в своей стране, занимали передовые позиции в области разработки системы оперативного измерения показателей. Однако их усилия были так велики, что в этих компаниях возникла даже шутка: «Если нечто двигается, измерь это!» Это, конечно, привело к появлению избыточности информации, которой никто никогда не пользуется, и не потому, что она неинтересна, а потому что нет времени, чтобы ее просмотреть. По этой причине к любой информации стали относиться пренебрежительно, даже к информации действительно важной. Все мероприятия по измерению показателей потеряли свою актуальность.
В заключение этого раздела хотелось бы привести несколько «расхожих дилетантских правил» проведения измерений: Измерение - это не к добрутечение длительного времени, особенно начиная с эры Тейлора, с его изучением хронометража и движений, измерения часто были направлены на контроль сотрудников. Способы измерений, которые предлагаются в этой книге, имеют совсем другую направленность. Они проводятся не для того, чтобы искать козла отпущения, а для того, чтобы понять, настолько хорошо действуют процессы. Очень важно разделить измерение и оценку, которая делается на его основе. Само по себе измерение никогда никому не вредило. Это только интерпретация результатов измерений и ее использование могло иметь негативные последствия. Чем точнее, тем лучше1. Всемерное повышение точности измерений может быть актуальным для технических систем или для бухгалтерской отчетности, но не для измерения показателей. Часто цель измерения показателей - установление того, достигнуто улучшение или нет, а вовсе не определение точного уровня показателей. Вкладывание больших средств в развитие чрезмерно точных измерительных систем на самом деле может замедлить и затормозить практическое внедрение этих систем. Так что нужен более практичный подход.
Все решают только деньги1. Традиционное рассмотрение окружающего мира через призму денег, утверждение, что только деньги надежный показатель всего - оказалось главным препятствием на пути развития более «мягких» направлений в системах измерения. Такие показатели, как качество рабочей ситуации, способность продукта удовлетворить потребности покупателя и т.д. также доставляют ценную информацию. Их не стоит отбрасывать только потому, что для них нет соответствующего денежного эквивалента. Все должно быть строго по стандартам! Совсем наоборот. Стандарты часто рассматривают как верхний предел показателей. Хороший стандарт подразумевает, что пока вы с ним работаете, у вас нет нужды в совершенствовании.